| 注册
首页|期刊导航|空天预警研究学报|基于改进极光优化的CNN-BiLSTM网络流量预测方法

基于改进极光优化的CNN-BiLSTM网络流量预测方法

苏玉泽 范雄华 石卉

空天预警研究学报2025,Vol.39Issue(6):415-418,435,5.
空天预警研究学报2025,Vol.39Issue(6):415-418,435,5.DOI:10.3969/j.issn.2097-180X.2025.06.005

基于改进极光优化的CNN-BiLSTM网络流量预测方法

A network traffic prediction method based on IPLO-CNN-BiLSTM

苏玉泽 1范雄华 1石卉1

作者信息

  • 1. 空军预警学院,武汉 430019
  • 折叠

摘要

Abstract

Network traffic prediction is a key technology for achieving rational allocation of network resourc-es and optimizing network performance.In order to improve the prediction accuracy of network traffic,this paper proposes a method based on improved polar lights optimization(IPLO)-convolutional neural network(CNN)-bidi-rectional long short-term memory neural network(BiLSTM).Firstly,by integrating the CNN spatial local feature extraction and the BiLSTM long-range dependency capture characteristics is constructed a CNN-BiLSTM net-work traffic prediction model.Then,the dynamic reverse learning strategy based on Beta distribution is intro-duced into the PLO algorithm to solve its problems of premature convergence and falling into local optima.Final-ly,the IPLO algorithm is introduced into the CNN-BiLSTM to optimize the hyperparameters and obtain the opti-mal hyperparameter combination for the CNN-BiLSTM.The experimental results show that,compared with other network traffic prediction methods,the IPLO-CNN-BiLSTM method achieves the best prediction results in the re-al network traffic set.

关键词

网络流量预测/卷积神经网络/双向长短期记忆神经网络/改进极光优化算法

Key words

traffic prediction/convolutional neural network(CNN)/bidirectional long short-term memory neural network(BiLSTM)/improved polar lights optimization(IPLO)

分类

信息技术与安全科学

引用本文复制引用

苏玉泽,范雄华,石卉..基于改进极光优化的CNN-BiLSTM网络流量预测方法[J].空天预警研究学报,2025,39(6):415-418,435,5.

基金项目

国家自然科学基金项目(62101591) (62101591)

空天预警研究学报

2097-180X

访问量0
|
下载量0
段落导航相关论文