| 注册
首页|期刊导航|林业科学研究|基于UAV-LiDAR的落叶松子代测定林单木分割方法研究

基于UAV-LiDAR的落叶松子代测定林单木分割方法研究

蔡天润 孙晓梅 陈东升 谢允慧

林业科学研究2025,Vol.38Issue(6):33-47,15.
林业科学研究2025,Vol.38Issue(6):33-47,15.DOI:10.12403/j.1001-1498.20240416

基于UAV-LiDAR的落叶松子代测定林单木分割方法研究

Individual Tree Segmentation Methods for Larch Progeny Test Forest Based on UAV-LiDAR

蔡天润 1孙晓梅 1陈东升 1谢允慧1

作者信息

  • 1. 林木遗传育种全国重点实验室,国家林业和草原局林木培育重点实验室,中国林业科学研究院林业研究所,北京 100091
  • 折叠

摘要

Abstract

[Objective]To identify optimal laser pulse repetition frequencies and individual tree segmenta-tion algorithms for progeny test forests,providing technical references for long-term phenotypic monitoring of breeding trial forests characterized by high canopy density and complex terrain based on UAV LiDAR.[Method]Based on a 37-year-old Japanese larch progeny test forest in Dagujia Forest Farm,Liaoning,three sets of fused point cloud data were obtained through 380 kHz forward and reverse fusion(380),550 kHz forward and reverse fusion(550),and the fusion of two laser pulse repetition frequencies(380550).By combining seed points derived from real locations with the Point Cloud-based Cluster Segmentation(PCS),and seed points from three Canopy Height Models(CHMs)with the Marker-Controlled Watershed Segmentation(MWS),the Seeded Region Growing(SRG),and PCS,a total of 30 single tree segmenta-tion combinations were generated.The appropriate laser pulse repetition frequency and individual tree segmentation algorithm were selected based on the accuracy of individual tree segmentation and tree height extraction,and the characteristics of unmatched individual trees were analyzed in conjunction with slope information.[Results]The PCS algorithm using ground-truth seeds achieved superior performance across all datasets(F-scores:380-PRF=0.96,380550-PRF=0.96,550-PRF=0.93),outperforming CHM-based approaches(mean F-scores:0.80,0.79,0.74 respectively);380-FR was identified as the optimal PRF configuration,yielding 0.96 segmentation F-score and 0.84 R² height accuracy with PCS;MWS and PCS using Kriging/IDW CHM seeds maintained robust performance(F=0.82-0.83,R²=0.83-0.84)without ground truth.Slope analysis revealed 67%of mismatches occurred on slopes>25°,predominantly sup-pressed trees within 4m radius zones.[Conclusion]This study identifies five UAV-LiDAR individual tree segmentation methods that are effective for high canopy density progeny test forests.The most effective segmentation method utilizes the PCS algorithm with real location points,enhancing the efficiency of phen-otypic trait surveys and supporting the long-term monitoring needs of tree breeding.

关键词

无人机/激光雷达/单木分割/育种/子代测定林/日本落叶松/脉冲重复频率

Key words

UAV/LiDAR/individual tree segmentation/breeding/progeny test forest/Larix kaempferi(Lamb.)Carrière/pulse repetition frequency

分类

农业科技

引用本文复制引用

蔡天润,孙晓梅,陈东升,谢允慧..基于UAV-LiDAR的落叶松子代测定林单木分割方法研究[J].林业科学研究,2025,38(6):33-47,15.

基金项目

中央级公益性科研院所基本科研业务费专项资金(LYSZX202002,CAFYBB2022ZC001) (LYSZX202002,CAFYBB2022ZC001)

"十四五"国家重点研发计划课题"林木优异种质维持的遗传基础"(2022YFD2200103) (2022YFD2200103)

林业科学研究

OA北大核心

1001-1498

访问量0
|
下载量0
段落导航相关论文