| 注册
首页|期刊导航|空天预警研究学报|面向5G的基于深度确定性策略梯度的资源分配算法

面向5G的基于深度确定性策略梯度的资源分配算法

吴名星

空天预警研究学报2025,Vol.39Issue(6):419-424,6.
空天预警研究学报2025,Vol.39Issue(6):419-424,6.DOI:10.3969/j.issn.2097-180X.2025.06.006

面向5G的基于深度确定性策略梯度的资源分配算法

Resource allocation algorithm based on deep deterministic policy gradient for 5G communication

吴名星1

作者信息

  • 1. 长沙民政职业技术学院软件学院,长沙 410004
  • 折叠

摘要

Abstract

In order to address the dynamic scheduling issue of communication and computing resources caused by the characteristic differences of service scenarios such as ultra-reliable low-latency communication(URLLC)and massive machine type communication(mMTC),a resource allocation algorithm based on deep de-terministic policy gradient(DDPG-RA)is proposed.Firstly,an optimization model aimed at minimizing the total system delay and energy consumption is constructed.Then,the DDPG framework is used to design the multi-di-mensional state space and continuous action decision-making mechanism.Finally,differentiated reward functions are designed respectively for the delay-sensitive URLLC and the energy-sensitive mMTC to achieve the dynamic optimization allocation of resources.The simulation results show that in typical urban scenarios,compared with the traditional deep Q network(DQN)algorithm and the Function as a Service(FAAS)algorithm,the DDPG-RA algorithm reduces the task processing delay of URLLC users by 4.3%,and that in the high-load scenario where the number of user devices are increased to 14,the energy consumption of the DDPG-RA algorithm is 17.6%low-er than that of FAAS algorithm.

关键词

5G通信/边缘计算/深度确定性策略梯度/资源分配/超可靠低时延通信/海量机器类通信

Key words

5G communication/edge computing/deep deterministic policy gradient(DDPG)/resource allo-cation/ultra-reliable low-latency communication(URLLC)/massive machine type communication(mMTC)

分类

信息技术与安全科学

引用本文复制引用

吴名星..面向5G的基于深度确定性策略梯度的资源分配算法[J].空天预警研究学报,2025,39(6):419-424,6.

基金项目

长沙民政职业技术学院教授科研项目(2023JB15) (2023JB15)

空天预警研究学报

2097-180X

访问量0
|
下载量0
段落导航相关论文