| 注册
首页|期刊导航|河南科技大学学报(自然科学版)|大数据驱动下乘用车行驶工况构建方法研究

大数据驱动下乘用车行驶工况构建方法研究

杨阳 卫倩 于谦

河南科技大学学报(自然科学版)2025,Vol.46Issue(6):38-48,11.
河南科技大学学报(自然科学版)2025,Vol.46Issue(6):38-48,11.DOI:10.15926/j.cnki.issn1672-6871.2025.06.005

大数据驱动下乘用车行驶工况构建方法研究

Research on the Construction Method of Passenger Car Driving Conditions Driven by Big Data

杨阳 1卫倩 1于谦2

作者信息

  • 1. 太原科技大学 车辆与交通工程学院,山西 太原 030024
  • 2. 长安大学 运输工程学院,陕西 西安 710064
  • 折叠

摘要

Abstract

To accurately characterize urban passenger vehicle driving patterns and address limitations in traditional driving scenario studies—such as limited sample sizes,poor clustering stability,and the omission of low-probability events during scenario synthesis—a big data-driven method for constructing driving scenarios is proposed.Using one year of OBD data from 200 passenger vehicles in Xi'an,a sample repository was built through data preprocessing and short-trip segmentation.Principal Component Analysis(PCA)was employed to reduce dimensionality to 16 feature parameters.The K-means++algorithm enhances clustering stability and accuracy.Markov Chain Monte Carlo(MCMC)optimizes cycle synthesis while preserving low-probability events.Results show the constructed candidate cycles exhibit an average relative error of 3.63%compared to raw data,significantly outperforming traditional methods:cluster-splicing(4.80%)the Markov chain method(5.60%),and standard driving cycles CLTC-P(8.74%)and WLTC(22.70%).

关键词

大数据/行驶工况/短行程/K-means++聚类分析/马尔可夫链蒙特卡洛

Key words

big data/short trip/kinematic segments/K-means++cluster analysis/Markov chain Monte Carlo

分类

交通工程

引用本文复制引用

杨阳,卫倩,于谦..大数据驱动下乘用车行驶工况构建方法研究[J].河南科技大学学报(自然科学版),2025,46(6):38-48,11.

基金项目

国家自然科学基金青年科学基金项目(52002032) (52002032)

陕西省自然科学基础研究计划面上项目(2025JC-YBMS-446) (2025JC-YBMS-446)

山西省回国留学人员科研资助项目(2024-126) (2024-126)

河南科技大学学报(自然科学版)

OA北大核心

1672-6871

访问量0
|
下载量0
段落导航相关论文