| 注册
首页|期刊导航|农业大数据学报|基于大模型的水稻育种领域知识发现与应用研究

基于大模型的水稻育种领域知识发现与应用研究

李娇 鲜国建 黄永文 罗婷婷 孙坦 马玮璐

农业大数据学报2025,Vol.7Issue(4):421-430,10.
农业大数据学报2025,Vol.7Issue(4):421-430,10.DOI:10.19788/j.issn.2096-6369.000123

基于大模型的水稻育种领域知识发现与应用研究

Knowledge Discovery and Its Application in Rice Breeding Using Large Language Models

李娇 1鲜国建 1黄永文 2罗婷婷 2孙坦 3马玮璐4

作者信息

  • 1. 中国农业科学院农业信息研究所,北京 100081||国家新闻出版署农业融合出版知识挖掘与知识服务,北京 100081||农业农村部农业大数据重点实验室,北京 100081
  • 2. 中国农业科学院农业信息研究所,北京 100081||国家新闻出版署农业融合出版知识挖掘与知识服务,北京 100081
  • 3. 农业农村部农业大数据重点实验室,北京 100081||中国农业科学院,北京 100081
  • 4. 中国农业科学院农业信息研究所,北京 100081
  • 折叠

摘要

Abstract

As the core carrier of the national germplasm security strategy,knowledge discovery research in rice breeding is of great significance.The rapid development of biotechnology and information technology has driven explosive growth in research findings in this field.Addressing the knowledge discovery challenges caused by academic resource overload can meet the demand of researchers for precise and intelligent knowledge-based innovation services.This paper proposes a multi-level rice breeding knowledge discovery framework based on large language models.It designs a technical path from data collection and preprocessing to fine-grained knowledge extraction,integration,and intelligent knowledge discovery.The framework's effectiveness is verified using high-quality scientific literature datasets from PMC,WOS,CrossRef,and DataCite.Focusing on rice breeding objectives,including high quality,high efficiency,yield potential,environmental friendliness,and multi-resistance,a thorough knowledge base has been created,integrating domain-specific entities,scientific resource entities,and citation networks.Through the synergistic analysis of citation networks and domain knowledge architectures,this framework-which incorporates the Nongzhi LLM-allows for multi-scenario and multi-granularity knowledge discovery.This study deeply integrates the semantic understanding of large-scale models with the logical constraints of domain knowledge organization.The"data-knowledge-service"path empowered by digital intelligence can effectively make implicit knowledge explicit and fragmentary knowledge systematic.It promotes efficient use of academic resources and innovative discoveries and offers a transferable framework intelligent for knowledge discovery across multiple agricultural fields.

关键词

水稻育种/知识发现/大语言模型

Key words

rice breeding/knowledge discovery/large language model

引用本文复制引用

李娇,鲜国建,黄永文,罗婷婷,孙坦,马玮璐..基于大模型的水稻育种领域知识发现与应用研究[J].农业大数据学报,2025,7(4):421-430,10.

基金项目

中国科协青年人才托举工程项目"面向科研论文的科学论证语义识别与解析研究"(2022QNRC001),国家社会科学基金一般项目"多模态科技资源的语义组织与关联发现服务研究"(22BTQ079),公益性科研院所基本科研业务费专项资金"领域知识抽取与知识发现应用研究"(JBYW-AII-2025-02). (2022QNRC001)

农业大数据学报

2096-6369

访问量0
|
下载量0
段落导航相关论文