| 注册
首页|期刊导航|山东农业大学学报(自然科学版)|基于改进YOLOv8s-Seg的鸡蛋沙壳区域分割方法研究

基于改进YOLOv8s-Seg的鸡蛋沙壳区域分割方法研究

张艳 孙震 陈嵩 王鲁

山东农业大学学报(自然科学版)2025,Vol.56Issue(6):938-948,11.
山东农业大学学报(自然科学版)2025,Vol.56Issue(6):938-948,11.DOI:10.3969/j.issn.1000-2324.2025.06.004

基于改进YOLOv8s-Seg的鸡蛋沙壳区域分割方法研究

Eggshell Sand Area Segmentation Method Based on Improved YOLOv8s-Seg

张艳 1孙震 1陈嵩 1王鲁2

作者信息

  • 1. 山东农业大学信息科学与工程学院,山东 泰安 271018
  • 2. 山东女子学院人工智能学院,山东 济南 250300
  • 折叠

摘要

Abstract

To address the automated detection needs in egg quality assessment and laying hen rearing condition monitoring,this paper proposes the YOLOv8-CTAC model to solve the problem of automatic segmentation of rough calcified matter on the surface of sand-shelled eggshells.Aiming at the shortcomings of YOLOv8s-Seg model in handling multi-scale information,feature expression,and attention to key regions,this study optimizes the feature extraction and expression ability of the model by integrating the Scale Sequence Feature Fusion(SSFF)module,Triple Feature Encoding(TFE)module,and Channel and Position Attention Mechanism(CPAM)module.Meanwhile,to cope with the sand shell category imbalance problem,the Varifocal Loss(VFL)function is introduced.The experimental results show that the YOLOv8-CTAC model exhibits significant improvements in both bounding box and mask evaluation aspects.Compared to the YOLOv8s-Seg model,it achieves enhancements of 6.7%in accuracy,8.3%in recall,and 7.4%in mean Average Precision(mAP)for bounding box evaluation.For mask evaluation,it improves by 8.3%in accuracy,8.9%in recall,and 8.2%in mAP.Moreover,compared to mainstream algorithms such as Mask R-CNN,SOLOv2,YOLOv8n-Seg,and YOLOv8s-Seg,it achieves an average improvement of 3.2%,10.1%,10.3%,and 6.7%respectively in mAP,significantly enhancing the detection performance in complex sandy-shell regions.This provides robust technical support and methodological assurance for the automated detection and segmentation tasks of sandy-shell eggs.

关键词

深度学习/多尺度特征提取/图像分割/YOLOv8s/沙壳蛋

Key words

Deep learning/multi-scale feature extraction/image segmentation/YOLOv8s/sand-shelled eggs

分类

信息技术与安全科学

引用本文复制引用

张艳,孙震,陈嵩,王鲁..基于改进YOLOv8s-Seg的鸡蛋沙壳区域分割方法研究[J].山东农业大学学报(自然科学版),2025,56(6):938-948,11.

山东农业大学学报(自然科学版)

OA北大核心

1000-2324

访问量0
|
下载量0
段落导航相关论文