| 注册
首页|期刊导航|综合智慧能源|基于灰狼优化算法和组合核函数GPR模型的锂电池剩余使用寿命预测

基于灰狼优化算法和组合核函数GPR模型的锂电池剩余使用寿命预测

胡林静 李在伟

综合智慧能源2025,Vol.47Issue(12):25-33,9.
综合智慧能源2025,Vol.47Issue(12):25-33,9.DOI:10.3969/j.issn.2097-0706.2025.12.003

基于灰狼优化算法和组合核函数GPR模型的锂电池剩余使用寿命预测

Prediction of remaining useful life of lithium batteries based on grey wolf optimization and combined kernel function GPR model

胡林静 1李在伟1

作者信息

  • 1. 内蒙古工业大学 电力学院,呼和浩特 010080
  • 折叠

摘要

Abstract

Accurately predicting the remaining useful life(RUL)of lithium-ion batteries can help users formulate reasonable maintenance strategies.As a data-driven method,Gaussian process regression(GPR)algorithm can effectively capture the nonlinear relationship between features and variables,and thus is widely used in the RUL estimation of lithium batteries.To address the deficiency of traditional single-kernel GPR in feature capture,a combined kernel GPR model based on the grey wolf optimization(GWO)algorithm was proposed.By combining kernel functions,the model's ability to capture nonlinear features was enhanced,and the GWO algorithm was utilized to overcome the difficulty in optimizing the hyperparameters of the combined kernel function.The NASA lithium battery cycle aging dataset was adopted to verify this model,and the single-kernel GPR model based on particle swarm(PSO)optimization was selected for comparison.The experimental results showed that the GWO-optimized combined kernel GPR model achieved a 37.89%reduction in root mean square error(RMSE)and a 70.42%reduction in mean absolute error(MAE)compared with the PSO-optimized single-kernel GPR model,demonstrating a stronger ability to capture capacity degradation.The results indicate that compared with the traditional GPR model,the GWO-optimized combined kernel GPR model has higher accuracy for the RUL prediction of lithium batteries.

关键词

锂离子电池/剩余使用寿命/高斯过程回归/灰狼优化算法/电池老化/容量衰减/预测误差/粒子群优化算法

Key words

lithium-ion battery/remaining useful life/Gaussian process regression/grey wolf optimization algorithm/battery aging/capacity degradation/prediction error/particle swarm optimization

分类

信息技术与安全科学

引用本文复制引用

胡林静,李在伟..基于灰狼优化算法和组合核函数GPR模型的锂电池剩余使用寿命预测[J].综合智慧能源,2025,47(12):25-33,9.

基金项目

内蒙古自然科学基金项目(2025LHMS05031)Inner Mongolia Natural Science Foundation Project(2025LHMS05031) (2025LHMS05031)

综合智慧能源

2097-0706

访问量0
|
下载量0
段落导航相关论文