| 注册
首页|期刊导航|可再生能源|一种针对小尺度风车的目标检测算法

一种针对小尺度风车的目标检测算法

鲍熠琳 胡晋山 康建荣 朱益虎 王胜利

可再生能源2025,Vol.43Issue(12):1638-1646,9.
可再生能源2025,Vol.43Issue(12):1638-1646,9.

一种针对小尺度风车的目标检测算法

An object detection algorithm for small-scale windmills

鲍熠琳 1胡晋山 1康建荣 1朱益虎 2王胜利2

作者信息

  • 1. 江苏师范大学 地理测绘与城乡规划学院,江苏 徐州 221116
  • 2. 江苏省地质测绘大队,江苏 南京 211102
  • 折叠

摘要

Abstract

Windmills are important facilities that convert wind energy into electrical energy.This paper addresses the issues of missed detections and false detections in the process of identifying small-scale windmills in remote sensing images by constructing a new GF-2 windmill dataset.It proposes the YOLO-WM algorithm for the small target detection task of windmills,adding a tiny object detection layer based on the YOLOv8 object detection algorithm,and incorporates a BSAM dynamic attention mechanism module in the backbone section.It replaces the C2f module with the lightweight C2f_RepGhost module and finally utilizes the SAHI slicing algorithm in the prediction stage to complete the windmill target detection task.Experimental results show that the YOLO-WM algorithm can better retain shallow convolutional features while reducing algorithm complexity,allowing for more accurate capture of small-scale target information.This method compensates for the shortcomings of small object detection datasets,and it has been verified that the improved algorithm performs better in detecting small-scale windmills than other algorithms.This research provides valuable insights for the rational optimization and allocation of wind energy resources and the joint analysis of geographical elements.

关键词

风车/深度学习/小目标检测/YOLOv8/高分影像

Key words

windmills/deep learning/small target detection/YOLOv8/GF images

分类

能源科技

引用本文复制引用

鲍熠琳,胡晋山,康建荣,朱益虎,王胜利..一种针对小尺度风车的目标检测算法[J].可再生能源,2025,43(12):1638-1646,9.

基金项目

国家自然科学基金项目(52074133,41671395). (52074133,41671395)

可再生能源

OA北大核心

1671-5292

访问量0
|
下载量0
段落导航相关论文