| 注册
首页|期刊导航|水利水电技术(中英文)|基于深度卷积注意力时序网络的污水处理厂进水水质预测

基于深度卷积注意力时序网络的污水处理厂进水水质预测

杨利伟 屈鑫 蒙怡筱 张若愚 陈浩楠 赵传靓 赵红梅

水利水电技术(中英文)2025,Vol.56Issue(12):15-26,12.
水利水电技术(中英文)2025,Vol.56Issue(12):15-26,12.DOI:10.13928/j.cnki.wrahe.2025.12.002

基于深度卷积注意力时序网络的污水处理厂进水水质预测

Prediction of influent water quality in wastewater treatment plants based on deep convolutional attention temporal networks

杨利伟 1屈鑫 1蒙怡筱 2张若愚 1陈浩楠 1赵传靓 1赵红梅1

作者信息

  • 1. 长安大学建筑工程学院住建部给水排水重点实验室,陕西西安 710061
  • 2. 西安航空基地管委会生态环境局,陕西西安 710089
  • 折叠

摘要

Abstract

[Objective]Under the"dual carbon"goals in China,the accurate prediction of influent water quality in wastewater treatment plants is crucial for energy conservation,emission reduction,and energy consumption reduction.[Methods]To address the insufficient accuracy of traditional influent water quality prediction method(such as artificial neural networks,recurrent neural networks,and long short-term memory networks)in handling the randomness and nonlinearity of wastewater water quality characteristics,a prediction model based on convolutional attention temporal neural network(CAT-NN)was proposed.The model integrated multi-scale information fusion and a hybrid attention mechanism,along with a temporal decoding module,to effectively capture the long-term trends and short-term abrupt changes in wastewater water quality indicators.[Results]Through the predictive analysis of four typical water quality indicators—COD,NH3-N,TN,and TP—of influent water data from a wastewater treatment plant in Yan'an City,Shaanxi Province,the CAT-NN model demonstrated excellent prediction perfor-mance,with a root mean square error(RMSE)of 4.50%and a mean absolute error(MAE)of 5.00%.Compared to traditional models(such as ANN,LSTM,and gated recurrent units(GRU)),the RMSE and MAE improved by over 16.13%and 20.00%,respectively.[Conclusion]The result indicate that the CAT-NN model achieves higher accuracy and stronger robustness in predicting influent water quality in wastewater treatment plants.The model not only provides strong support for the precise control and efficient operation of wastewater treatment plants,but also serves as a key technological solution for achieving energy conservation and emission reduction goals.

关键词

污水处理厂/进水水质预测/卷积注意力时序网络/深度学习/碳中和/模型性能

Key words

wastewater treatment plants/prediction of influent water quality/convolutional attention temporal network/deep learning/carbon neutrality/model performance

分类

建筑与水利

引用本文复制引用

杨利伟,屈鑫,蒙怡筱,张若愚,陈浩楠,赵传靓,赵红梅..基于深度卷积注意力时序网络的污水处理厂进水水质预测[J].水利水电技术(中英文),2025,56(12):15-26,12.

基金项目

国家重点研发计划(2018YFE0103800) (2018YFE0103800)

陕西省住建节能能力建设课题项目(2022-03514) (2022-03514)

水利水电技术(中英文)

OA北大核心

1000-0860

访问量0
|
下载量0
段落导航相关论文