| 注册
首页|期刊导航|四川轻化工大学学报(自然科学版)|高光谱与多光谱图像融合技术综述

高光谱与多光谱图像融合技术综述

张星月 陈明举 胡潇 李森远 宋晓飞 饶杰

四川轻化工大学学报(自然科学版)2025,Vol.38Issue(6):17-28,12.
四川轻化工大学学报(自然科学版)2025,Vol.38Issue(6):17-28,12.DOI:10.11863/j.suse.2025.06.03

高光谱与多光谱图像融合技术综述

A Review of Hyperspectral and Multispectral Image Fusion Technique

张星月 1陈明举 1胡潇 1李森远 1宋晓飞 1饶杰1

作者信息

  • 1. 四川轻化工大学 自动化与信息工程学院,四川 宜宾 644000||智能感知与控制四川省重点实验室,四川 宜宾 644000
  • 折叠

摘要

Abstract

Hyperspectral and multispectral image fusion(HS-MS fusion),as a crucial technique for enhancing the spatial resolution of remote sensing(RS)images,has emerged as a focal point in multi-source remote sensing image fusion(MSRS fusion)research.Firstly,the concept of MSRS fusion is introduced.Secondly,the recent advances in HS-MS fusion from the perspectives of fusion levels,architectures,and methodologies are comprehensively reviewed.The fusion levels are classified into three categories including pixel-level,feature-level and decision-level;the fusion structures are summarized into three types containing serial,parallel and hybrid;the fusion methods are comprehensively categorized into multiple categories such as pan-sharpening-based and supervised learning-based methods,and the differences and connections between traditional methods,deep learning methods,and their combined fusion methods are analyzed.Finally,the applications of HS-MS fusion in agricultural monitoring and climate change research are discussed,the problems and challenges faced in multi-source information mining and scenario-specific personalized requirements are summarized,and the targeted improvement solutions are provided.Moreover,prospects for future development are outlined.

关键词

遥感图像融合/高光谱图像/多光谱图像/多源信息融合

Key words

remote sensing image fusion/hyperspectral image/multispectral image/multi-source information fusion

分类

信息技术与安全科学

引用本文复制引用

张星月,陈明举,胡潇,李森远,宋晓飞,饶杰..高光谱与多光谱图像融合技术综述[J].四川轻化工大学学报(自然科学版),2025,38(6):17-28,12.

基金项目

四川省自然科学基金项目(2025ZNSFSC0477 ()

2024NSFSC2042) ()

四川轻化工大学研究生创新基金资助项目(Y2024297) (Y2024297)

四川轻化工大学学报(自然科学版)

2096-7543

访问量0
|
下载量0
段落导航相关论文