| 注册
首页|期刊导航|现代电子技术|基于卷积神经网络的高分辨率遥感影像目标边界提取方法

基于卷积神经网络的高分辨率遥感影像目标边界提取方法

王小红

现代电子技术2026,Vol.49Issue(1):49-53,5.
现代电子技术2026,Vol.49Issue(1):49-53,5.DOI:10.16652/j.issn.1004-373x.2026.01.008

基于卷积神经网络的高分辨率遥感影像目标边界提取方法

High resolution remote sensing image object boundary extraction method based on convolutional neural network

王小红1

作者信息

  • 1. 青海民族大学 智能科学与工程学院,青海 西宁 810000||青海省地理空间信息技术与应用重点实验室,青海 西宁 810000
  • 折叠

摘要

Abstract

In view of the impact of factors such as occlusion and rotation on object boundary extraction in high-resolution remote sensing images,a CNN-based method for extracting object boundaries from high-resolution remote sensing images is proposed.The high-resolution remote sensing image object boundary extraction framework is implemented by CNN,on the basis of which,a feature enhancement module is introduced to avoid insufficient representation of semantic information and loss of detail information in the shallow and deep feature extraction of network object boundaries.The network loss function is optimized,and the object boundary map is preprocessed and then converted into a probability map of boundary information,and then a threshold value is set to exclude uncertain pixels,so as to enhance the robustness and accuracy of model object boundary extraction.The experimental results show that the proposed method can achieve accurate extraction of object boundaries,and is not easily affected by remote sensing image rotation.In addition,it has excellent ability of object boundary extraction under different degrees of occlusion.

关键词

卷积神经网络/高分辨率遥感影像/目标边界提取/深层特征/特征增强/边界概率图

Key words

CNN/high resolution remote sensing image/object boundary extraction/deep feature/feature enhancement/boundary probability map

分类

信息技术与安全科学

引用本文复制引用

王小红..基于卷积神经网络的高分辨率遥感影像目标边界提取方法[J].现代电子技术,2026,49(1):49-53,5.

基金项目

青海省地理空间信息技术与应用重点实验室基金资助项目(QHDX-2023-01) (QHDX-2023-01)

现代电子技术

1004-373X

访问量0
|
下载量0
段落导航相关论文