| 注册
首页|期刊导航|现代情报|融合DeepSeek-R1和RAG技术的先秦文化元典智能问答研究

融合DeepSeek-R1和RAG技术的先秦文化元典智能问答研究

张强 高颖 任豆豆 韩牧哲 包平

现代情报2026,Vol.46Issue(1):173-186,14.
现代情报2026,Vol.46Issue(1):173-186,14.DOI:10.3969/j.issn.1008-0821.2026.01.015

融合DeepSeek-R1和RAG技术的先秦文化元典智能问答研究

Research on Intelligent Question Answering for Pre-Qin Cultural Classics by Integrating DeepSeek-R1 and RAG Technologies

张强 1高颖 2任豆豆 3韩牧哲 4包平2

作者信息

  • 1. 淮阴师范学院文学院,江苏 淮安 223300||南京农业大学人文与社会发展学院,江苏 南京 210095||南京农业大学数字人文研究中心,江苏 南京 210095
  • 2. 南京农业大学人文与社会发展学院,江苏 南京 210095||南京农业大学数字人文研究中心,江苏 南京 210095
  • 3. 新疆大学计算机科学与技术学院,新疆维吾尔自治区 乌鲁木齐 830017
  • 4. 江苏大学图书馆,江苏 镇江 212013
  • 折叠

摘要

Abstract

[Purpose/Significance]As the source literature of Chinese civilization,the pre-Qin cultural classics contri-bute to providing historical evidence and value judgments for building a modern Chinese national civilization and enhancing national cultural soft power through knowledge organization and intelligent application.This study aims to develop an inte-lligent Q&A system for pre-Qin cultural classics based on Retrieval-Augmented Generation(RAG)technology to promote the intelligent application and inheritance of relevant knowledge.[Methods/Process]Taking the"Three Commentaries on the Spring and Autumn Annals"published by Zhonghua Book Company as the research object,the research constructed an ontology model for pre-Qin cultural classics,and used DeepSeek-R1 for knowledge extraction,and constructed a knowledge graph.Based on the LangChain framework,four Retrieval-Augmented Generation(RAG)methods-GraphRAG,NaiveRAG,LightRAG,and HybridRAG-were employed to enhance the retrieval ability of the large language model,and the question-answering ability was evaluated from both quantitative and mixed aspects.[Result/Conclusion]The research results show that DeepSeek-R1 demonstrates excellent extraction performance,with the generated triples effectively covering key knowledge while maintaining high quality.In the intelligent question-answering evaluation,different RAG approaches have their respective strengths and weaknesses.GraphRAG performs well across various question types and evaluation dimensions,particularly excelling in verification-and-traceability-oriented and applied-practice-oriented questions.NaiveRAG shows better performance in factual knowledge-oriented questions.Based on comprehensive quantitative and hybrid evaluations,selecting appropriate RAG technology according to practical application scenarios is crucial.

关键词

先秦文化元典/大语言模型/DeepSeek/检索增强生成/智能问答

Key words

pre-Qin cultural classics/large language models/DeepSeek/Retrieval-Augmented Generation/intelli-gent question answering

分类

信息技术与安全科学

引用本文复制引用

张强,高颖,任豆豆,韩牧哲,包平..融合DeepSeek-R1和RAG技术的先秦文化元典智能问答研究[J].现代情报,2026,46(1):173-186,14.

基金项目

国家社会科学基金青年项目"出土文献的多模态知识组织与融合研究"(项目编号:23CTQ038). (项目编号:23CTQ038)

现代情报

1008-0821

访问量2
|
下载量0
段落导航相关论文