新疆师范大学学报(自然科学版)2026,Vol.45Issue(1):91-95,112,6.
共形双扭曲积芬斯勒度量的局部对偶平坦性
Locally Dually Flatness Metrics of Conformally Doubly Warped Product Finsler Metrics
摘要
Abstract
Let F1 and F2 be Finsler metrics on smooth manifolds M1 and M2 respectively,the conformally doubly warped product Finsler metric is a Finsler metric F=eσ√f22 F21+f21 F22 defined on the product manifold M=M1×M2,where f1,f2 and σ are positive smooth functions on M1,M2 and M respectively.In this paper,it is proved that the conformally doubly warped product Finsler metric F is locally dually flat if and only if both F1 and F2 are locally dually flat and F is a product Finsler metric.关键词
芬斯勒度量/共形双扭曲积/局部对偶平坦/乘积芬斯勒度量Key words
Finsler metric/Conformally doubly warped product/Locally dually flat/Product Finsler metric分类
数理科学引用本文复制引用
杨蕊嘉,何勇..共形双扭曲积芬斯勒度量的局部对偶平坦性[J].新疆师范大学学报(自然科学版),2026,45(1):91-95,112,6.基金项目
新疆维吾尔自治区自然科学基金项目(2024D01A88) (2024D01A88)
国家自然科学基金项目(12261088 ()
1176109). ()