| 注册
首页|期刊导航|压力容器|基于机器学习的管束流体弹性不稳定性预测方法研究

基于机器学习的管束流体弹性不稳定性预测方法研究

卢玲玲 孙正瑞 朱国瑞

压力容器2025,Vol.42Issue(7):22-29,8.
压力容器2025,Vol.42Issue(7):22-29,8.DOI:10.3969/j.issn.1001-4837.2025.07.003

基于机器学习的管束流体弹性不稳定性预测方法研究

Research on prediction method for fluid-elastic instability of tube bundles based on machine learning

卢玲玲 1孙正瑞 2朱国瑞3

作者信息

  • 1. 天津大学 福州国际联合学院,天津 300072||天津大学 浙江研究院,浙江 宁波 315000
  • 2. 天津大学 化工学院,天津 300350
  • 3. 天津大学 福州国际联合学院,天津 300072||天津大学 浙江研究院,浙江 宁波 315000||天津大学 化工学院,天津 300350
  • 折叠

摘要

Abstract

To address the safety issues of shell-and-tube heat exchangers caused by fluid-elastic instability(FEI)due to flow-induced vibration,a two-phase water tunnel test setup was built to investigate the effect of void fraction on the fluid-elastic instability characteristics of a single flexible tube with unequal natural frequencies in rigid tube arrays with different pitch-to-diameter ratios(P/D=1.41,1.483).A machine learning algorithm was introduced to construct a support vector machine model for predicting fluid-elastic instability,obtaining the critical flow velocity for fluid-elastic instability and verifying the model's stability and accuracy.The results show that the prediction results using the machine learning algorithm based on the support vector machine model have errors 19%lower than those of the quasi-static model,14.2%lower than those of the unsteady model,and 14.5%lower than those of the quasi-steady model.The research results can provide references for predicting fluid-elastic instability in heat exchangers.

关键词

管壳式换热器/流体弹性不稳定性/机器学习

Key words

shell-and-tube heat exchanger/fluid-elastic instability/machine learning

分类

机械制造

引用本文复制引用

卢玲玲,孙正瑞,朱国瑞..基于机器学习的管束流体弹性不稳定性预测方法研究[J].压力容器,2025,42(7):22-29,8.

基金项目

中国广核集团尖峰计划项目(3100173757) (3100173757)

压力容器

OA北大核心

1001-4837

访问量0
|
下载量0
段落导航相关论文