| 注册
首页|期刊导航|渔业现代化|基于声呐图像与双流时空注意力的鱼类摄食行为识别

基于声呐图像与双流时空注意力的鱼类摄食行为识别

王志俊 赵霞

渔业现代化2025,Vol.52Issue(6):115-122,8.
渔业现代化2025,Vol.52Issue(6):115-122,8.DOI:10.26958/j.cnki.1007-9580.2025.06.014

基于声呐图像与双流时空注意力的鱼类摄食行为识别

Fish feeding behavior recognition based on sonar images and dual-stream spatio-temporal attention

王志俊 1赵霞2

作者信息

  • 1. 同济大学电子与信息工程学院,上海 201804||中国水产科学研究院渔业机械仪器研究所,上海 200092
  • 2. 同济大学电子与信息工程学院,上海 201804
  • 折叠

摘要

Abstract

Aiming at the problems of significant noise interference in sonar images and insufficient representation capability under small-sample conditions in fish feeding behavior recognition,this paper proposes a dual-stream spatio-temporal attention network that fuses domain knowledge and deep features.First,an improved wavelet filtering algorithm is proposed to effectively remove bubble noise in sonar images.Then,a dual-stream feature fusion architecture is designed,where the statistical feature stream includes 6-dimensional features such as target quantity and spacing standard deviation,and the deep feature stream extracts high-order semantic features of sonar images through the Residual Network(ResNet18).Meanwhile,a Long Short-Term Memory network(LSTM)is introduced to capture the temporal dependency of behavior sequences,and a spatio-temporal cross-attention mechanism is combined to adaptively focus on key frames and target areas.Experiments on the self-built dataset show that the classification accuracy of this network reaches 77.0%,among which wavelet denoising,dual-stream fusion,and spatio-temporal attention mechanism contribute precision improvements of 1.8%,5.9%,and 2.8%respectively,verifying the effectiveness of each component.This study provides a new method for underwater target behavior recognition.

关键词

声呐图像/小波去噪/特征融合/LSTM/时空交叉注意力

Key words

sonar image/wavelet denoising/feature fusion/LSTM/spatio-temporal cross-attention

分类

农业科技

引用本文复制引用

王志俊,赵霞..基于声呐图像与双流时空注意力的鱼类摄食行为识别[J].渔业现代化,2025,52(6):115-122,8.

基金项目

国家重点研发计划(2023YFD2401304) (2023YFD2401304)

渔业现代化

OA北大核心

1007-9580

访问量0
|
下载量0
段落导航相关论文