| 注册
首页|期刊导航|中国科学数据(中英文网络版)|基于Sentinel-5P的黄河流域痕量气体数据集(2018-2024)

基于Sentinel-5P的黄河流域痕量气体数据集(2018-2024)

曹诗宇 梁继 冯克庭 杨莲

中国科学数据(中英文网络版)2025,Vol.10Issue(4):68-82,15.
中国科学数据(中英文网络版)2025,Vol.10Issue(4):68-82,15.DOI:10.11922/11-6035.csd.2025.0067.zh

基于Sentinel-5P的黄河流域痕量气体数据集(2018-2024)

A dataset of trace gases in the Yellow River Basin based on Sentinel-5P(2018-2024)

曹诗宇 1梁继 1冯克庭 2杨莲3

作者信息

  • 1. 湖南科技大学,地球科学与空间信息工程学院,湖南 湘潭 411201
  • 2. 中国科学院地球环境研究所,黄土科学数据中心,西安 710061||中国科学院地球环境研究所,黄土科学全国重点实验室,西安 710061
  • 3. 湖南省岳阳生态环境监测中心,湖南 岳阳 414000
  • 折叠

摘要

Abstract

This study systematically develops a spatiotemporal distribution dataset(YRB-S5P-TGD)of four trace gases(CH4,HCHO,NO2,and CO)in the Yellow River Basin from 2018 to 2024,based on ESA Sentinel-5P satellite L2 offline data streams and GEE L3 standardized datasets.The dataset integrates the high-frequency global coverage advantage of S5P satellites with the cloud computing capabilities of the GEE platform.The study adopts a standardized processing workflow:(1)Data screening and quality control:Offline data streams are prioritized,with low-confidence observations filtered using quality flags;(2)Spatiotemporal aggregation and resampling:Monthly/annual mean vertical column concentrations are calculated,and the original resolution is upscaled to a 1 km grid using bilinear resampling;(3)Regional cropping and standardized output:GeoTIFF-format datasets are generated based on the Yellow River Basin boundary to ensure compatibility with mainstream GIS analysis requirements.By implementing rigorous and unified quality control standards,the dataset effectively avoids biases potentially introduced during reprocessing,supporting multi-scale analyses ranging from monthly variations to interannual trends.This dataset constitutes a valuable supplement to the systematic observation data of trace gases in the Yellow River Basin.Its high spatiotemporal resolution delivers critical data support for research such as precise source apportionment of regional air pollution and greenhouse gas flux estimation.

关键词

痕量气体/黄河流域/Sentinel-5P/Google Earth Engine 平台/YRB-S5P-TGD

Key words

trace gases/Yellow River Basin/Sentinel-5P/Google Earth Engine Platform/YRB-S5P-TGD

引用本文复制引用

曹诗宇,梁继,冯克庭,杨莲..基于Sentinel-5P的黄河流域痕量气体数据集(2018-2024)[J].中国科学数据(中英文网络版),2025,10(4):68-82,15.

基金项目

湖南省自然资源厅科技计划项目(20230127DZ) (20230127DZ)

湖南省大学生创新训练计划项目(S144351) (S144351)

湖南省环保科研课题(HBKT-2022018).Research Foundation of the Department of Natural Resources of Hunan Province(Grant No.20230127DZ) (HBKT-2022018)

Hunan Provincial College Students Innovation Training Program Project(S144351) (S144351)

Hunan Provincial Environmental Protection Scientific Research Project(HBKT-2022018). (HBKT-2022018)

中国科学数据(中英文网络版)

2096-2223

访问量0
|
下载量0
段落导航相关论文