| 注册
首页|期刊导航|湖北汽车工业学院学报|基于改进YOLOv8的密集行人检测算法

基于改进YOLOv8的密集行人检测算法

Gong Yu Gao Ren Xu Longyan Chen Yaling

湖北汽车工业学院学报2025,Vol.39Issue(4):7-12,6.
湖北汽车工业学院学报2025,Vol.39Issue(4):7-12,6.DOI:10.3969/j.issn.1008-5483.2025.04.002

基于改进YOLOv8的密集行人检测算法

Dense Pedestrian Detection Algorithm Based on Improved YOLOv8

Gong Yu 1Gao Ren 1Xu Longyan 1Chen Yaling1

作者信息

  • 1. School of Electrical&Information Engineering,Hubei University of Automotive Technology,Shiyan 442002,China
  • 折叠

摘要

Abstract

In response to issues of missed detections and difficulties in feature extraction caused by overlap,occlusion,and small size in dense pedestrian detection,an improved YOLOv8 algorithm was proposed.In the algorithm,EfficientNet was introduced to optimize the C2f module,enhancing the effi-ciency of feature extraction and feature representation capability.Additionally,the RepGFPN module was introduced to fuse multi-scale feature maps,improving multi-scale detection capabilities.The RFAHead detection head was used to dynamically adjust the receptive field,optimizing target region capture.Experimental results show that on the WiderPerson dataset,mAP50 and mAP50-95 of the im-proved algorithm increase by 2.6%and 3.4%,respectively,with a 28.4%reduction in computational load.On the CrowdHuman dataset,mAP50 and mAP50-95 of the improved algorithm improve by 4.3%and 5.8%,respectively.

关键词

密集行人检测/YOLOv8/EfficientNet/RepGFPN模块/检测头

Key words

dense pedestrian detection/YOLOv8/EfficientNet/RepGFPN module/detection head

分类

信息技术与安全科学

引用本文复制引用

Gong Yu,Gao Ren,Xu Longyan,Chen Yaling..基于改进YOLOv8的密集行人检测算法[J].湖北汽车工业学院学报,2025,39(4):7-12,6.

基金项目

湖北省教育厅科学技术研究计划项目(D202111802) (D202111802)

湖北省重点研发计划项目(2022BEC008) (2022BEC008)

湖北汽车工业学院学报

1008-5483

访问量0
|
下载量0
段落导航相关论文