| 注册
首页|期刊导航|湖北汽车工业学院学报|基于GWO-BP神经网络的摩擦片磨损量预测

基于GWO-BP神经网络的摩擦片磨损量预测

Wang Guiqian Hou Jun

湖北汽车工业学院学报2025,Vol.39Issue(4):31-34,39,5.
湖北汽车工业学院学报2025,Vol.39Issue(4):31-34,39,5.DOI:10.3969/j.issn.1008-5483.2025.04.006

基于GWO-BP神经网络的摩擦片磨损量预测

Wear Amount Prediction of Friction Plates Based on GWO-BP Neural Network

Wang Guiqian 1Hou Jun1

作者信息

  • 1. School of Mechanical Engineering,Hubei University of Automotive Technology,Shiyan 442002,China
  • 折叠

摘要

Abstract

In order to solve the problems of high complexity,many parameters,and insufficient accura-cy of traditional prediction models,a wear amount prediction model of the friction plate based on a back-propagation neural network optimized by the grey wolf optimizer(GWO-BP)was proposed.The predic-tion accuracy of the model was improved through the optimization of initial parameters,and the conver-gence speed was accelerated to effectively avoid falling into a local optimum.The experiments on the public dataset show that the determination coefficient of the model is 0.9940;the average absolute error is 0.0030,and the mean bias error is 0.0011,demonstrating excellent predictive performance.

关键词

摩擦片/磨损量预测/灰狼优化算法/BP神经网络

Key words

friction plate/wear amount prediction/gray wolf optimization algorithm/BP neural network

分类

交通工程

引用本文复制引用

Wang Guiqian,Hou Jun..基于GWO-BP神经网络的摩擦片磨损量预测[J].湖北汽车工业学院学报,2025,39(4):31-34,39,5.

基金项目

汽车动力传动与电子控制湖北省重点实验室开放基金(ZDK12023B10) (ZDK12023B10)

湖北汽车工业学院博士科研启动基金(BK202223) (BK202223)

湖北汽车工业学院学报

1008-5483

访问量0
|
下载量0
段落导航相关论文