| 注册
首页|期刊导航|光学精密工程|融合BO-CNN-BiLSTM的压电式六维力/力矩传感器非线性解耦

融合BO-CNN-BiLSTM的压电式六维力/力矩传感器非线性解耦

CHU Hongbo WANG Guicong GAO Jialong LI Yingjun

光学精密工程2025,Vol.33Issue(23):3702-3713,12.
光学精密工程2025,Vol.33Issue(23):3702-3713,12.DOI:10.37188/OPE.20253323.3702

融合BO-CNN-BiLSTM的压电式六维力/力矩传感器非线性解耦

Decoupling of piezoelectric six-dimensional force sensors incorporating BO-CNN-BiLSTM

CHU Hongbo 1WANG Guicong 2GAO Jialong 1LI Yingjun2

作者信息

  • 1. School of Mechanical Engineering,University of Jinan,Jinan 250022,China
  • 2. School of Mechanical Engineering,University of Jinan,Jinan 250022,China||Shandong Provincial Key Laboratory of Sensor Technology and High Precision Weighing Instruments,Jinan 250004,China
  • 折叠

摘要

Abstract

To address the degradation of force measurement performance caused by interdimensional cou-pling in piezoelectric six-dimensional force/torque sensors,an integrated decoupling algorithm(BO-CNN-BiLSTM)combining Bayesian optimization(BO),convolutional neural networks(CNN),and bidirec-tional long short-term memory networks(BiLSTM)is proposed.In this algorithm,CNN is first em-ployed to enhance the extraction of spatial coupling features from six-dimensional force signals.BiLSTM is then utilized to exploit bidirectional temporal modeling capabilities and dynamically capture cross-dimen-sional time-domain dependencies of the loads.Subsequently,BO is introduced to achieve adaptive global optimization of hyperparameters.In this way,the limitations of traditional decoupling methods in terms of real-time performance,generalization ability,and physical consistency are effectively overcome.The pro-posed BO-CNN-BiLSTM algorithm eliminates the empirical dependence on manually tuned parameters in conventional approaches and enables adaptive modeling of the nonlinear characteristics of sensors.Experi-mental results demonstrate that the maximum nonlinear error and cross-coupling error of the six-dimension-al force/torque sensor outputs are 0.87%and 0.52%,respectively.The BO-CNN-BiLSTM decoupling algorithm effectively reduces both intra-dimensional and interdimensional coupling in six-dimensional force sensors,significantly improving measurement accuracy and providing important support for anthropomor-phic motion control and environmental interaction in humanoid robots.

关键词

六维力传感器/静态解耦/贝叶斯优化/卷积双向长短期记忆网络

Key words

six-dimensional force sensors/static decoupling/Bayesian optimization/CNN-BiLSTM

分类

信息技术与安全科学

引用本文复制引用

CHU Hongbo,WANG Guicong,GAO Jialong,LI Yingjun..融合BO-CNN-BiLSTM的压电式六维力/力矩传感器非线性解耦[J].光学精密工程,2025,33(23):3702-3713,12.

基金项目

山东省自然科学基金资助项目(No.ZR2023ME109) (No.ZR2023ME109)

山东省科技型中小企业创新能力提升工程资助项目(No.2024TSGC0912) (No.2024TSGC0912)

济南市"新高校20条"科研带头人工作资助项目(No.202228116) (No.202228116)

光学精密工程

OA北大核心

1004-924X

访问量1
|
下载量0
段落导航相关论文