| 注册
首页|期刊导航|纺织工程学报|基于多特征融合的PSO-SVM优化算法睡眠脑电方法

基于多特征融合的PSO-SVM优化算法睡眠脑电方法

ZHANG Yaqian LIU Hao

纺织工程学报2025,Vol.3Issue(6):1-18,18.
纺织工程学报2025,Vol.3Issue(6):1-18,18.

基于多特征融合的PSO-SVM优化算法睡眠脑电方法

PSO-SVM optimization algorithm sleep EEG method based on multi feature fusion

ZHANG Yaqian 1LIU Hao1

作者信息

  • 1. @@@a.School of Textile Science and Engineering||b.Institute of Intelligent Wearable Electronic Textiles,Tiangong University,Tianjin 300387,China
  • 折叠

摘要

Abstract

In response to the issues of single feature dimension and low efficiency in hyperparameter optimiza-tion in existing sleep staging methods,a multi-feature analysis approach that integrates time-frequency domain features with nonlinear dynamic parameters is proposed.The Support Vector Machine(SVM)classification model is improved by combining the Particle Swarm Optimization(PSO)algorithm to achieve the staging of sleep EEG signals.Through wavelet threshold denoising and Principal Component Analysis(PCA)for dimen-sionality reduction,the feature dimension is reduced from 15 to 6(with a cumulative contribution rate of 92.3%).A feature set including time-domain statistics,frequency band energy ratios,and nonlinear parameters is constructed.The kernel parameters and penalty factors of the SVM are optimized using PSO to enhance clas-sification performance.In the 5-fold cross-validation on the Sleep-EDF public dataset(10 subjects,4526 seg-ments),an overall accuracy of over 90%is achieved,which is an 8.2 percentage point improvement compared to the traditional grid search method.The experimental results demonstrate that the proposed method,through feature fusion and parameter optimization,provides a reliable technical solution for the development of clinical sleep monitoring devices.

关键词

睡眠脑电信号/支持向量机/多特征融合/主成分分析/粒子群优化/睡眠分类

Key words

sleep EEG signals/Support Vector Machines/multi-feature fusion/principal component analysis/Particle swarm optimization/sleep classification

分类

轻工纺织

引用本文复制引用

ZHANG Yaqian,LIU Hao..基于多特征融合的PSO-SVM优化算法睡眠脑电方法[J].纺织工程学报,2025,3(6):1-18,18.

基金项目

国家重点研发计划"科技冬奥"重点专项(2019YFF0302105) (2019YFF0302105)

天津市自然科学基金资助项目(18JCYBJC18500) (18JCYBJC18500)

国家自然科学基金资助项目(52203276,82272204). (52203276,82272204)

纺织工程学报

2095-4131

访问量0
|
下载量0
段落导航相关论文