| 注册
首页|期刊导航|计算机与数字工程|基于马卡龙序列分解的Transformer支路参数辨识

基于马卡龙序列分解的Transformer支路参数辨识

WANG Linpeng SONG Gongfei WANG Menglong

计算机与数字工程2025,Vol.53Issue(10):2677-2682,2738,7.
计算机与数字工程2025,Vol.53Issue(10):2677-2682,2738,7.DOI:10.3969/j.issn.1672-9722.2025.10.001

基于马卡龙序列分解的Transformer支路参数辨识

Transformer Branch Parameter Identification Based on Macaron Sequence Decomposition

WANG Linpeng 1SONG Gongfei 2WANG Menglong1

作者信息

  • 1. School of Automation,Nanjing University of Information Science&Technology,Nanjing 210044
  • 2. School of Automation,Nanjing University of Information Science&Technology,Nanjing 210044||Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET),Nanjing 210044
  • 折叠

摘要

Abstract

Parameter identification plays an important role in power system.As a long-term prediction problem of time series,in order to explain the complex time pattern,a Transformer branch parameter identification method based on Macaron sequence de-composition is proposed.Among them,the sequence decomposition module is regarded as the internal block of the deep model.Dur-ing the whole prediction process,the hidden sequence is gradually decomposed,including the past sequence and the intermediate results of the prediction.At the same time,the Macaron network is used to replace the original feedforward layer in Transformer with two half-step feedforward layers,and the self-attention module and the sequence decomposition module are placed between them.The experimental results show that the proposed algorithm has higher prediction accuracy and is significantly better than other ma-chine learning algorithms and deep learning algorithms.

关键词

马卡龙网络/序列分解/自注意力机制/参数辨识/深度学习

Key words

Macaron network/sequence decomposition/self-attention mechanism/parameter identification/deep learning

分类

信息技术与安全科学

引用本文复制引用

WANG Linpeng,SONG Gongfei,WANG Menglong..基于马卡龙序列分解的Transformer支路参数辨识[J].计算机与数字工程,2025,53(10):2677-2682,2738,7.

基金项目

国家自然科学基金项目(编号:61973170)资助. (编号:61973170)

计算机与数字工程

1672-9722

访问量0
|
下载量0
段落导航相关论文