| 注册
首页|期刊导航|计算机与数字工程|基于深度学习的信噪分离方法研究

基于深度学习的信噪分离方法研究

CAO Weifan ZHANG Erhua

计算机与数字工程2025,Vol.53Issue(10):2693-2696,4.
计算机与数字工程2025,Vol.53Issue(10):2693-2696,4.DOI:10.3969/j.issn.1672-9722.2025.10.004

基于深度学习的信噪分离方法研究

Research on Methods of Speech Separation Based on Deep Learning

CAO Weifan 1ZHANG Erhua1

作者信息

  • 1. School of Computer Science and Engineering,Nanjing University of Science&Technology,Nanjing 210094
  • 折叠

摘要

Abstract

Aiming at the problem of monaural speech signal-to-noise separation,a method based on deep learning is used.The speech information contains in the high-frequency part and the low-frequency part of the speech is compared.Only the low-fre-quency part of the speech is used to train the deep learning model,and better separation results are obtained.According to the differ-ence of the separation effect of the speech with stationary noise or paroxsive noise,the phenomenon of crosstalk in the separation re-sults is studied.Griffin-lim algorithm is used to reconstruct the separated speech and smooth the amplitude to eliminate channeling.

关键词

信噪分离/深度学习/窜音现象

Key words

signal-noise separation/deep learning/crosstalk phenomenon

分类

信息技术与安全科学

引用本文复制引用

CAO Weifan,ZHANG Erhua..基于深度学习的信噪分离方法研究[J].计算机与数字工程,2025,53(10):2693-2696,4.

计算机与数字工程

1672-9722

访问量0
|
下载量0
段落导航相关论文