| 注册
首页|期刊导航|红外技术|基于YOLO网络的无人机红外目标检测研究进展

基于YOLO网络的无人机红外目标检测研究进展

YANG Haitao YAN Zhiyuan JIANG Zihan WANG Huapeng HAN Kai YAN Xiai XIONG Yingzhuo ZHU Mingzhe

红外技术2025,Vol.47Issue(12):1468-1482,15.
红外技术2025,Vol.47Issue(12):1468-1482,15.

基于YOLO网络的无人机红外目标检测研究进展

Research Progress on UAV Infrared Target Detection Based on YOLO

YANG Haitao 1YAN Zhiyuan 2JIANG Zihan 3WANG Huapeng 4HAN Kai 5YAN Xiai 6XIONG Yingzhuo 6ZHU Mingzhe7

作者信息

  • 1. Department of Criminal Science and Technology,Hunan Police Academy,Changsha 410138,China||School of Police Information Technology and Intelligence Criminal Investigation Police University of China,Shenyang 110854,China
  • 2. School of Computer Science,Peking University,Beijing 100871,China
  • 3. Shanghai Research Institute for Intelligent Autonomous Systems,Tongji University,Shanghai 410000,China
  • 4. School of Police Information Technology and Intelligence Criminal Investigation Police University of China,Shenyang 110854,China
  • 5. Institute of Big-Data and Network Security,Zhejiang Police College,Hangzhou 310053,China
  • 6. Department of Criminal Science and Technology,Hunan Police Academy,Changsha 410138,China
  • 7. School of Electronic Engineering,Xidian University,Xi'an 710071,China
  • 折叠

摘要

Abstract

Infrared target detection on unmanned aerial vehicles(UAVs)has become a key capability for intelligent perception and autonomous decision-making in public security,border surveillance,and emergency response.By leveraging end-to-end architectures and strong feature-learning efficiency,the YOLO family of neural models has surpassed traditional handcrafted methods and now represents the mainstream framework for infrared detection.Recent progress in anchor-free design,multi-scale fusion,attention mechanisms,and end-to-end inference has markedly improved the detection of small and low-contrast targets in complex scenes.In this study,we review UAV-based infrared detection approaches built on YOLO models,synthesize major enhancement strategies,and evaluate their effects on weak target recognition and real-time performance while summarizing representative datasets.Remaining challenges such as retention of weak signal,cross-modal alignment,and spatiotemporal modeling are analyzed,and future directions toward multi-source collaborative perception and onboard intelligent deployment are outlined.

关键词

无人机/目标检测/红外图像/计算机视觉/深度学习

Key words

UAV/object detection/infrared images/computer vision/deep learning

分类

信息技术与安全科学

引用本文复制引用

YANG Haitao,YAN Zhiyuan,JIANG Zihan,WANG Huapeng,HAN Kai,YAN Xiai,XIONG Yingzhuo,ZHU Mingzhe..基于YOLO网络的无人机红外目标检测研究进展[J].红外技术,2025,47(12):1468-1482,15.

基金项目

湖南省重点研发计划(2024AQ2023,2024AQ2024) (2024AQ2023,2024AQ2024)

湖南省社会科学评审委员会课题(XSP2025WTY003) (XSP2025WTY003)

湖南省教育厅重点项目(23A0705) (23A0705)

重庆市自然科学基金创新发展联合基金(CSTB2022NSCQ-LZX007) (CSTB2022NSCQ-LZX007)

湖南省生态环境科研项目(HBKYXM-2024034). (HBKYXM-2024034)

红外技术

OA北大核心

1001-8891

访问量0
|
下载量0
段落导航相关论文