| 注册
首页|期刊导航|聊城大学学报(自然科学版)|使用YOLOv8-OD和DeepSORT的车辆跟踪算法

使用YOLOv8-OD和DeepSORT的车辆跟踪算法

TONG Yuan FEI Shumin

聊城大学学报(自然科学版)2026,Vol.39Issue(1):24-31,8.
聊城大学学报(自然科学版)2026,Vol.39Issue(1):24-31,8.DOI:10.19728/j.issn1672-6634.2025020008

使用YOLOv8-OD和DeepSORT的车辆跟踪算法

Vehicle tracking algorithms using YOLOv8-OD and DeepSORT

TONG Yuan 1FEI Shumin2

作者信息

  • 1. School of Infomation Engineering,Jiangsu College of Tourism,Yangzhou 225000,China||School of Automation,Southeast University,Nanjing 210096,China
  • 2. School of Automation,Southeast University,Nanjing 210096,China
  • 折叠

摘要

Abstract

To address the limitations of traditional multi-object tracking algorithms in terms of detection accuracy,tracking precision,and robustness,this paper proposes a novel method based on the Tracking-By-Detection paradigm for vehicle flow monitoring.The method employs the YOLOv8 object detection al-gorithm to achieve rapid localization and identification of vehicle targets,and integrates an improved deep learning-based DeepSORT multi-object tracking algorithm to ensure accurate and real-time tracking and counting of vehicles.Experimental results demonstrate that the proposed method achieves high detection accuracy when handling fast-moving vehicles,with an average precision of 94.7%.This end-to-end ap-proach exhibits good feasibility and effectiveness in batch processing applications of vehicle video data.

关键词

YOLOv8/DeepSORT/深度学习/车辆跟踪

Key words

YOLOv8/DeepSORT/deep learning/vehicle tracking

分类

交通工程

引用本文复制引用

TONG Yuan,FEI Shumin..使用YOLOv8-OD和DeepSORT的车辆跟踪算法[J].聊城大学学报(自然科学版),2026,39(1):24-31,8.

基金项目

国家自然科学基金项目(61973105)资助 (61973105)

聊城大学学报(自然科学版)

1672-6634

访问量0
|
下载量0
段落导航相关论文