| 注册
首页|期刊导航|实验技术与管理|面向新型电力系统的故障诊断技术研究进展(二):机器学习和大语言模型技术

面向新型电力系统的故障诊断技术研究进展(二):机器学习和大语言模型技术

ZHANG Jianliang ZHANG Xiaojie MA Jian YU Bingyang HAN Tao JI Ruisong

实验技术与管理2025,Vol.42Issue(12):54-70,17.
实验技术与管理2025,Vol.42Issue(12):54-70,17.DOI:10.16791/j.cnki.sjg.2025.12.007

面向新型电力系统的故障诊断技术研究进展(二):机器学习和大语言模型技术

Review of the fault diagnosis technology for new power systems(PartⅡ):Machine learning and large language model techniques

ZHANG Jianliang 1ZHANG Xiaojie 2MA Jian 3YU Bingyang 4HAN Tao 1JI Ruisong5

作者信息

  • 1. College of Electrical Engineering,Zhejiang University,Hangzhou 310027,China||Zhejiang Key Laboratory of Electrical Technology and System on Renewable Energy,Hangzhou 310027,China
  • 2. Office of Talent Management,Zhejiang University,Hangzhou 310027,China
  • 3. Jinhua Power Supply Company,State Grid Zhejiang Electric Power Company,Jinhua 321017,China
  • 4. Zhejiang Museum of Natural History,Hangzhou 310014,China
  • 5. College of Electrical Engineering,Zhejiang University,Hangzhou 310027,China
  • 折叠

摘要

Abstract

[Objective]Modern power systems are rapidly evolving,characterized by an exponential increase in equipment volume,highly complex network topologies,and continuously changing operating conditions.Traditional fault diagnosis methods,relying on expert knowledge and threshold-based judgment,now face technical bottlenecks,including limited real-time performance,high misjudgment rates,and difficulties in multimodal data fusion.Developing intelligent diagnostic technologies based on machine learning,artificial intelligence,big data mining,and multisource information fusion has therefore become essential for achieving accurate fault identification and rapid fault location.[Methods]Recent advances in machine learning and large language models(LLMs)have opened new paths for fault diagnosis.Deep-learning-based architectures can integrate time-series operational data with multisource monitoring signals,extract cross-modal fault correlation features,and analyze fault propagation paths under dynamic coupling relationships.Transfer learning and federated learning help mitigate data silos and improve cross-regional diagnostic generalization.Supervised learning technology enhances anomaly detection robustness in small-sample scenarios.Meanwhile,LLMs can incorporate domain knowledge graphs through knowledge distillation,perform semantic reasoning and multicriteria collaborative decision-making,and support the development of diagnostic systems that combine data-driven learning with knowledge-informed causal inference.[Results]This article systematically reviews recent research progress in machine learning and LLM-based fault diagnosis technologies for new-type power systems,compares the characteristics of representative approaches,summarizes the key challenges in their practical application,and finally,outlines future research directions.[Conclusion]The work provides theoretical insights and technical pathways for building efficient,robust,and interpretable intelligent fault diagnosis systems for new power systems through systematic technical analysis and sorting.

关键词

新型电力系统/故障诊断/机器学习/大语言模型

Key words

new power systems/fault diagnosis/machine learning/large language models

分类

信息技术与安全科学

引用本文复制引用

ZHANG Jianliang,ZHANG Xiaojie,MA Jian,YU Bingyang,HAN Tao,JI Ruisong..面向新型电力系统的故障诊断技术研究进展(二):机器学习和大语言模型技术[J].实验技术与管理,2025,42(12):54-70,17.

基金项目

国网浙江省电力有限公司科技项目(5211JH250009) (5211JH250009)

浙江大学实验室技术研究项目(SYBJS202511) (SYBJS202511)

浙江省自然科学基金项目(LMS26E070005) (LMS26E070005)

实验技术与管理

OA北大核心

1002-4956

访问量0
|
下载量0
段落导航相关论文