| 注册
首页|期刊导航|网络与信息安全学报|基于半监督学习的Tor匿名网络加密流量分类方法研究

基于半监督学习的Tor匿名网络加密流量分类方法研究

CAO Qingwei GONG Liangyi LI Yufu MO Xiuliang YANG Ke YUAN Yali

网络与信息安全学报2025,Vol.11Issue(6):131-143,13.
网络与信息安全学报2025,Vol.11Issue(6):131-143,13.DOI:10.11959/j.issn.2096-109x.2025070

基于半监督学习的Tor匿名网络加密流量分类方法研究

Study of semi-supervised learning based encrypted traffic classification method for Tor anonymity network

CAO Qingwei 1GONG Liangyi 2LI Yufu 2MO Xiuliang 1YANG Ke 1YUAN Yali3

作者信息

  • 1. Tianjin University of Science and Technology,Tianjin 300384,China
  • 2. Computer Network Information Center,Chinese Academy of Sciences,Beijing 100083,China||University of Chinese Academy of Sciences,Beijing 101408,China
  • 3. Southeast University,Nanjing 211189,China
  • 折叠

摘要

Abstract

The onion routing(Tor)anonymous network,due to its multi-layer encryption and dynamic relay mecha-nisms,posed significant challenges for traffic classification.Illegal applications or websites traffic hidden within Tor anonymous network traffic could not be effectively detected by traditional traffic identification techniques.To address this issue a semi-supervised learning-based method for encrypted traffic classification in Tor networks was proposed.A unified"pretraining+fine-tuning"framework was utilized to fully leverage unlabeled data.In the pre-training phase,a dynamic masking mechanism was introduced to gradually adjust the masking ratio,enhancing the model's ability to learn latent features.In the fine-tuning phase,a channel and spatial attention(CSA)module was integrated to improve the model's sensitivity to critical local regions.The overall approach was built on a Transformer-based architecture,combining self-supervised feature extraction with enhanced discriminative capabil-ity.Experimental results on the ISCXTor2016 dataset and a self-collected dark web traffic dataset showed that the proposed method achieved over 98%across all performance metrics in classifying eight typical traffic categories,demonstrating excellent generalization ability and practical value.

关键词

Tor匿名网络流量/半监督学习/暗网/Transformer

Key words

Tor anonymous network traffic/semi-supervised learning/dark Web/Transformer

分类

信息技术与安全科学

引用本文复制引用

CAO Qingwei,GONG Liangyi,LI Yufu,MO Xiuliang,YANG Ke,YUAN Yali..基于半监督学习的Tor匿名网络加密流量分类方法研究[J].网络与信息安全学报,2025,11(6):131-143,13.

基金项目

国家重点研发计划(2023YFB3106700) The National Key Research and Development Program of China(2023YFB3106700) (2023YFB3106700)

网络与信息安全学报

2096-109X

访问量1
|
下载量0
段落导航相关论文