| 注册
首页|期刊导航|岩石力学通报(英文)|Exploring machine learning techniques for open stope stability prediction:A comparative study and feature importance analysis

Exploring machine learning techniques for open stope stability prediction:A comparative study and feature importance analysis

Alicja Szmigiel Derek B.Apel Yashar Pourrahimian Hassan Dehghanpour Yuanyuan Pu

岩石力学通报(英文)2025,Vol.4Issue(3):39-52,14.
岩石力学通报(英文)2025,Vol.4Issue(3):39-52,14.DOI:10.1016/j.rockmb.2024.100146

Exploring machine learning techniques for open stope stability prediction:A comparative study and feature importance analysis

Exploring machine learning techniques for open stope stability prediction:A comparative study and feature importance analysis

Alicja Szmigiel 1Derek B.Apel 1Yashar Pourrahimian 1Hassan Dehghanpour 1Yuanyuan Pu2

作者信息

  • 1. University of Alberta,School of Mining and Petroleum Engineering,Edmonton,Alberta,T6G 2R3,Canada
  • 2. Chongqing University,Chongqing,400044,China
  • 折叠

摘要

关键词

Machine learning/Stope stability/Feature importance/Artificial neural network

Key words

Machine learning/Stope stability/Feature importance/Artificial neural network

引用本文复制引用

Alicja Szmigiel,Derek B.Apel,Yashar Pourrahimian,Hassan Dehghanpour,Yuanyuan Pu..Exploring machine learning techniques for open stope stability prediction:A comparative study and feature importance analysis[J].岩石力学通报(英文),2025,4(3):39-52,14.

基金项目

The Natural Sciences and Engineering Research Council of Canada(NSERC)Discovery grant is financially supported by this project:NSERC RGPIN-2019-04572 Apel.The authors are grateful for their support. (NSERC)

岩石力学通报(英文)

2773-2304

访问量1
|
下载量0
段落导航相关论文