| 注册
首页|期刊导航|岩石力学通报(英文)|Deep learning-powered rock mass classification:Predicting RMR from Q-system parameters with high accuracy

Deep learning-powered rock mass classification:Predicting RMR from Q-system parameters with high accuracy

Tawanda Zvarivadza Abiodun Ismail Lawal Moshood Onifade Francois Mulenga Sangki Kwon Manoj Khandelwal

岩石力学通报(英文)2025,Vol.4Issue(4):27-40,14.
岩石力学通报(英文)2025,Vol.4Issue(4):27-40,14.DOI:10.1016/j.rockmb.2025.100219

Deep learning-powered rock mass classification:Predicting RMR from Q-system parameters with high accuracy

Deep learning-powered rock mass classification:Predicting RMR from Q-system parameters with high accuracy

Tawanda Zvarivadza 1Abiodun Ismail Lawal 2Moshood Onifade 3Francois Mulenga 2Sangki Kwon 4Manoj Khandelwal3

作者信息

  • 1. Department of Civil,Environmental and Natural Resources Engineering,Luleå University of Technology,Luleå,Sweden
  • 2. Department of Mining Engineering,University of South Africa,Florida Campus Private Bag X6,Johannesburg,1710,South Africa
  • 3. Institute of Innovation,Science and Sustainability,Federation University Australia,Ballarat,Victoria 3350,Australia
  • 4. Department of Energy Resources Engineering,Inha University,Yong-Hyun Dong,Nam Ku,Incheon,South Korea
  • 折叠

摘要

关键词

Deep learning/Rock mass rating(RMR)/Q parameters/Neural network/ANN

Key words

Deep learning/Rock mass rating(RMR)/Q parameters/Neural network/ANN

引用本文复制引用

Tawanda Zvarivadza,Abiodun Ismail Lawal,Moshood Onifade,Francois Mulenga,Sangki Kwon,Manoj Khandelwal..Deep learning-powered rock mass classification:Predicting RMR from Q-system parameters with high accuracy[J].岩石力学通报(英文),2025,4(4):27-40,14.

岩石力学通报(英文)

2773-2304

访问量0
|
下载量0
段落导航相关论文