| 注册
首页|期刊导航|信息工程大学学报|脑电大模型研究进展综述

脑电大模型研究进展综述

HE Zhongyang GAO Yuanlong ZENG Ying WANG Linyuan PEI Changfu YAN Bin

信息工程大学学报2025,Vol.26Issue(6):674-682,9.
信息工程大学学报2025,Vol.26Issue(6):674-682,9.DOI:10.3969/j.issn.1671-0673.2025.06.007

脑电大模型研究进展综述

A Review of Research Progress on Electroencephalogram Large Models

HE Zhongyang 1GAO Yuanlong 1ZENG Ying 1WANG Linyuan 1PEI Changfu 1YAN Bin1

作者信息

  • 1. Information Engineering University,Zhengzhou 450001,China
  • 折叠

摘要

Abstract

Electroencephalogram(EEG)large models have emerged as a significant research direction in EEG analysis due to their exceptional representation learning capabilities.To systematically review progress in this field,the core theories and key technologies underlying these models are first analyzed,examining their theoretical foundations and design principles.Subsequently,a comprehensive compari-son of mainstream EEG large models is conducted across dimensions including model concepts,archi-tectural designs,feature extraction methods,learning paradigms,and model scales.A particular em-phasis is placed on comparing and analyzing the binary classification performance of the datasets and downstream tasks used by these models.Finally,based on the analytical results,future development di-rections for EEG large models are discussed.A knowledge framework of EEG large models is estab-lished to serve as a reference for subsequent research and promote in-depth development in the field.

关键词

脑电图/Transformer架构/自监督学习/脑电大模型

Key words

EEG/Transformer/self-supervised learning/EEG large models

分类

信息技术与安全科学

引用本文复制引用

HE Zhongyang,GAO Yuanlong,ZENG Ying,WANG Linyuan,PEI Changfu,YAN Bin..脑电大模型研究进展综述[J].信息工程大学学报,2025,26(6):674-682,9.

基金项目

科技创新2030重大项目(2022ZD0208500) (2022ZD0208500)

国家自然科学基金(62106285) (62106285)

信息工程大学学报

1671-0673

访问量0
|
下载量0
段落导航相关论文