| 注册
首页|期刊导航|中国临床医学影像杂志|基于MRI与临床病理的联合模型鉴别乳腺癌HER2表达状态的研究

基于MRI与临床病理的联合模型鉴别乳腺癌HER2表达状态的研究

XIA Lu CHAO Hong-yan YANG Jin-han TAO Yuan-ping REN Yue MIAO Yu-yun ZHENG Ru-meng SHAN Yan-na CUI Feng

中国临床医学影像杂志2025,Vol.36Issue(12):859-864,6.
中国临床医学影像杂志2025,Vol.36Issue(12):859-864,6.DOI:10.12117/jccmi.2025.12.006

基于MRI与临床病理的联合模型鉴别乳腺癌HER2表达状态的研究

Discrimination of HER2 expression status in breast cancer using a combined MR imaging and clinicopathological model

XIA Lu 1CHAO Hong-yan 1YANG Jin-han 1TAO Yuan-ping 1REN Yue 1MIAO Yu-yun 1ZHENG Ru-meng 1SHAN Yan-na 2CUI Feng1

作者信息

  • 1. Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University,Hangzhou 310007,China
  • 2. Department of Radiology,Affiliated Hangzhou First People's Hospital,School of Medicine,Westlake University,Hangzhou 310006,China
  • 折叠

摘要

Abstract

Objective:To explore the performance of the combined model based on MR imaging features and clinicopathological features in discriminating human epidermal growth factor receptor 2(HER2)expressing statuses in breast cancer.Methods:This retrospective study included 274 patients with pathologically confirmed breast cancer(Center 1:149 cases;Center 2:125 cases)from September 2016 to October 2024.Patients were stratified into HER2-positive and HER2-negative groups based on HER2 expression status.MRI features and clinicopathological features of eligible patients were analyzed to evaluate differences between the two groups.Multivariate Logistic regression was employed to identify independent predictors.The discriminative performance of the model for HER2 expression status was evaluated using the area under the receiver operating characteristic curve(AUC),calibration curve,and decision curve analysis(DCA).Results:Multivariate Logistic regression revealed that ADC value(P=0.010),number of lesions(P<0.001),PR(P<0.001),and Ki67(P=0.007)were independent predictors of HER2 positivity.The combined model demonstrated AUC values of 0.783(95%CI:0.717~0.850)in the training set and 0.773(95%CI:0.670~0.875)in the test set.Conclusion:The integrated imaging-clinicopathological model effectively discriminates HER2 expression status in breast cancer patients,providing a convenient,intuitive,and efficient imaging tool.This approach offers a novel and practical imaging-based assessment method for prognostic evaluation and personalized treatment planning in HER2-positive breast cancer.

关键词

乳腺肿瘤/病理学,临床/磁共振成像

Key words

Breast Neoplasms/Pathology,Clinical/Magnetic Resonance Imaging

分类

医药卫生

引用本文复制引用

XIA Lu,CHAO Hong-yan,YANG Jin-han,TAO Yuan-ping,REN Yue,MIAO Yu-yun,ZHENG Ru-meng,SHAN Yan-na,CUI Feng..基于MRI与临床病理的联合模型鉴别乳腺癌HER2表达状态的研究[J].中国临床医学影像杂志,2025,36(12):859-864,6.

基金项目

杭州市科技局项目(202204B07) (202204B07)

浙江省医药卫生科技计划项目(2023KY990) (2023KY990)

杭州市医药卫生科技项目(A20220619). (A20220619)

中国临床医学影像杂志

OA北大核心

1008-1062

访问量0
|
下载量0
段落导航相关论文