| 注册
首页|期刊导航|制冷技术|多核集成学习算法在多联机制冷剂充注量故障中的诊断研究

多核集成学习算法在多联机制冷剂充注量故障中的诊断研究

ZHANG Xue CHEN Huanxin ZHANG Li CHEN Hengda

制冷技术2025,Vol.45Issue(5):42-49,65,9.
制冷技术2025,Vol.45Issue(5):42-49,65,9.DOI:10.3969/j.issn.2095-4468.2025.05.201

多核集成学习算法在多联机制冷剂充注量故障中的诊断研究

Research on Diagnosis of Refrigerant Charging Faults for Variable Refrigerant Flow Systems with Multi-Kernel Ensemble Learning

ZHANG Xue 1CHEN Huanxin 1ZHANG Li 1CHEN Hengda1

作者信息

  • 1. School of Energy and Powering Engineering,Huazhong University of Science and Technology,Wuhan 430074,Hubei,China
  • 折叠

摘要

Abstract

Aiming at the problem of refrigerant charge faults in the variable refrigerant flow(VRF)system,a refrigerant charge fault diagnosis model based on a multi-kernel ensemble learning algorithm is proposed in this paper.Firstly,the operational data of the VRF system is preprocessed,including data deduplication,label assignment,outlier handling,data standardization,and dataset partitioning.Then,the required refrigerant charge fault diagnosis model for the VRF is constructed based on the principles of the multi-kernel ensemble learning.The model is fine-tuned using the preprocessed data to obtain the optimal fault diagnosis model.Finally,the optimized model is evaluated for performance.The results show that the fault diagnosis model is able to effectively diagnose the refrigerant charge faults of the VRF,and the macro-Precision,macro-Recall,macro-F1,and the overall diagnosis accuracy reach 98.26%,97.27%,97.76%,and 98.10%,respectively,which are higher than the rest of the single-kernel fault diagnosis models.

关键词

多联机系统/多核集成学习/故障诊断

Key words

Variable refrigerant flow system/Multi-kernel ensemble learning/Fault diagnosis

分类

建筑与水利

引用本文复制引用

ZHANG Xue,CHEN Huanxin,ZHANG Li,CHEN Hengda..多核集成学习算法在多联机制冷剂充注量故障中的诊断研究[J].制冷技术,2025,45(5):42-49,65,9.

基金项目

国家自然科学基金(No.51876070,No.51576074). (No.51876070,No.51576074)

制冷技术

2095-4468

访问量1
|
下载量0
段落导航相关论文