| 注册
首页|期刊导航|华东交通大学学报|基于深度学习的钢桥面板U肋-顶板节点Lamb波损伤检测

基于深度学习的钢桥面板U肋-顶板节点Lamb波损伤检测

田亮 宋鹏飞 张海顺 肖飞知 樊立龙 赵健

华东交通大学学报2025,Vol.42Issue(6):17-30,14.
华东交通大学学报2025,Vol.42Issue(6):17-30,14.

基于深度学习的钢桥面板U肋-顶板节点Lamb波损伤检测

Research on Lamb Wave Damage Detection in U-Rib-Deck Joints of Steel Bridge Decks Based on Deep Learning

田亮 1宋鹏飞 2张海顺 3肖飞知 3樊立龙 3赵健3

作者信息

  • 1. 天津城建大学土木工程学院,天津 300384||中国铁建大桥工程局集团有限公司,天津 300300||清华大学土木工程系,北京 100084
  • 2. 天津城建大学土木工程学院,天津 300384
  • 3. 中国铁建大桥工程局集团有限公司,天津 300300||天津市装配式桥梁智能建造技术与装备重点实验室,天津 300300
  • 折叠

摘要

Abstract

To address the challenges in identifying damage characteristics caused by multimodal Lamb wave propagation,dispersion effects,and signal attenuation in complex structures like steel bridge decks,this study proposes a deep learning-based damage detection method for U-Rib-Deck joints in steel bridge decks.By embed-ding squeeze-excitation(SE)attention mechanisms and long short-term memory(LSTM)networks into convolu-tional neural networks(CNN),combined with constructing datasets using Hilbert transform envelope curves,ef-fective identification of typical fatigue damages in U-Rib-Deck joints is achieved.The research results demon-strate:①Under damage conditions,the direct wave packet exhibits a rightward phase shift and amplitude attenu-ation,confirming the feasibility of using time-domain signal changes for damage detection.②The SE-LSTM-CNN model achieved validation accuracy and test accuracy of 93.67%and 95.00%,respectively,with the recog-nition accuracy for all types of damage exceeding 90%,indicating the model's excellent applicability for dam-age detection tasks in steel bridge deck U-Rib-Deck joints.③The classification accuracy of the SE-CNN and LSTM-CNN models improved by 1.00%and 3.33%,respectively,compared to the baseline CNN model,while the SE-LSTM-CNN model further improved accuracy by 7.33%and 5.00%compared to the single-improvement models,validating the synergistic effectiveness of SE attention mechanism and LSTM for damage detection in steel bridge deck U-Rib-Deck joints;furthermore,using the envelope curve dataset increased the model's valida-tion accuracy by 21.33%compared to raw signals,demonstrating this method's effectiveness in enhancing the SE-LSTM-CNN model's ability to identify Lamb wave damage features.④The intelligent detection software developed based on MATLAB APP Designer achieved full-process optimization for damage detection,reducing errors from human intervention.This research is expected to provide a new technical solution for damage detec-tion in steel bridge deck U-Rib-Deck joints.

关键词

桥梁工程/钢桥面板/Lamb波/深度学习/数值仿真

Key words

bridge engineering/steel bridge deck/Lamb waves/deep learning/numerical simulation

分类

交通工程

引用本文复制引用

田亮,宋鹏飞,张海顺,肖飞知,樊立龙,赵健..基于深度学习的钢桥面板U肋-顶板节点Lamb波损伤检测[J].华东交通大学学报,2025,42(6):17-30,14.

基金项目

天津市自然科学基金项目(24JCYBJC00850) (24JCYBJC00850)

中国铁建股份有限公司科研重大专项(2023-A01) (2023-A01)

中国铁建大桥局集团有限公司科技创新项目(DQJ-2024-B05) (DQJ-2024-B05)

华东交通大学学报

1005-0523

访问量0
|
下载量0
段落导航相关论文