| 注册
首页|期刊导航|火箭推进|基于学习的视频运动放大算法在振动测试中的应用

基于学习的视频运动放大算法在振动测试中的应用

张一鸣 郝方楠 徐自力 李广 金旭

火箭推进2025,Vol.51Issue(6):67-76,10.
火箭推进2025,Vol.51Issue(6):67-76,10.DOI:10.3969/j.issn.1672-9374.2025.06.007

基于学习的视频运动放大算法在振动测试中的应用

Applications of learning-based video motion magnification algorithm for vibration test

张一鸣 1郝方楠 2徐自力 1李广 1金旭1

作者信息

  • 1. 西安交通大学航天航空学院复杂服役环境重大装备结构强度与寿命全国重点实验室,陕西西安 710049
  • 2. 西安交通大学航天航空学院复杂服役环境重大装备结构强度与寿命全国重点实验室,陕西西安 710049||西安航天动力研究所,陕西西安 710100
  • 折叠

摘要

Abstract

In engine ground tests,vibration test of pipes and other key components is crucial for optimizing structural design and improving safety.To address the difficulty of vision-based methods to accurately capture vibration information in micro-amplitude vibration tests,this paper first introduces the learning-based video motion magnification(LB-VMM)to magnify the pixel changes in micro-amplitude vibration videos.Then,the Kanade-Lucas-Tomasi(KLT)optical flow theory is adopted to track the motion so that the magnified vibration signals can be extracted for time or frequency domain analysis.Finally,two practical application paths,vibration signal analysis and rapid mode shape identification,are further constructed.Vibration test of the pipeline and mode shape identification test of the beam are carried out for verification.Compared with the phase-based video motion magnification,the LB-VMM magnified video significantly reduces motion artifacts and distortions,and the computation speed is improved by about 20 times.By introducing LB-VMM to magnify the micro-amplitude vibration,gains can be made to the high-frequency components.The micro-amplitude vibration video can directly visualize the high-quality mode shape after the time-domain band-pass filtering and high magnification with LB-VMM,and the MAC values between the experimental mode shapes and theoretical mode shapes of the beam are above 0.9.The findings demonstrate that LB-VMM can effectively improve the ability of vision-based methods for testing the micro-amplitude vibration,with a good application prospect.

关键词

火箭发动机/计算机视觉/微幅振动/视频运动放大/深度学习/光流

Key words

rocket engine/computer vision/micro-amplitude vibration/video motion magnification/deep learning/optical flow

分类

航空航天

引用本文复制引用

张一鸣,郝方楠,徐自力,李广,金旭..基于学习的视频运动放大算法在振动测试中的应用[J].火箭推进,2025,51(6):67-76,10.

基金项目

装备重大基础研究项目(514010106-302) (514010106-302)

火箭推进

OA北大核心

1672-9374

访问量0
|
下载量0
段落导航相关论文