| 注册
首页|期刊导航|海洋测绘|基于神经网络的水下桩体多波束点云滤波

基于神经网络的水下桩体多波束点云滤波

夏显文 王炎青 龚权华

海洋测绘2025,Vol.45Issue(5):6-10,5.
海洋测绘2025,Vol.45Issue(5):6-10,5.DOI:10.3969/j.issn.1671-3044.2025.05.002

基于神经网络的水下桩体多波束点云滤波

Application and analysis of point cloud neural network in underwater pile filtering

夏显文 1王炎青 2龚权华3

作者信息

  • 1. 中国交通建设集团第三航务工程局有限公司,上海 200032
  • 2. 武汉大学测绘学院,湖北武汉 430070
  • 3. 中国交通建设集团第三航务工程局新能源工程有限公司,上海 200137
  • 折叠

摘要

Abstract

To address the inaccuracy in underwater pile surveying caused by outliers in multibeam bathymetric data,this study proposes a filtering method integrating sample augmentation and a lightweight PCPNet.Four outlier simulation models(isolated points/structured clusters/bad pings/side-lobe effects)were constructed based on sonar physical mechanisms.The improved network adopts random local sampling(N=500 points),removes the STN module,optimizes feature alignment,and employs a weighted loss function.Tests on 35 wind-power pile datasets show:at 90%confidence,the average outlier removal rate reaches 98.7%with pile point retention rate>99%,significantly outperforming conventional methods.This approach provides reliable technical support for high-accuracy pile monitoring in complex seabed environments.

关键词

海洋测绘/点云滤波/多波束测深/点云局部特征学习/水下桩体目标/粗差滤除

Key words

hydrographic surveying and charting/point cloud filtering/multibeam bathymetry/local feature learning of point cloud/underwater pile target/outlier removal

分类

天文与地球科学

引用本文复制引用

夏显文,王炎青,龚权华..基于神经网络的水下桩体多波束点云滤波[J].海洋测绘,2025,45(5):6-10,5.

基金项目

国家重点研发专项(2022YFC2808303). (2022YFC2808303)

海洋测绘

OA北大核心

1671-3044

访问量1
|
下载量0
段落导航相关论文