| 注册
首页|期刊导航|海洋测绘|基于深度学习的航空重力浅海海域地形反演

基于深度学习的航空重力浅海海域地形反演

付天朔 叶周润 梁星辉 边少锋 柳林涛

海洋测绘2025,Vol.45Issue(5):16-20,5.
海洋测绘2025,Vol.45Issue(5):16-20,5.DOI:10.3969/j.issn.1671-3044.2025.05.004

基于深度学习的航空重力浅海海域地形反演

Bathymetric inversion of shallow sea regions using aerial gravity based on deep learning

付天朔 1叶周润 1梁星辉 2边少锋 3柳林涛2

作者信息

  • 1. 合肥工业大学土木与水利工程学院,安徽 合肥 230009
  • 2. 大地测量与地球动力学国家重点实验室,湖北武汉 430077
  • 3. 中国地质大学(武汉)地质探测与评估教育部重点实验室,湖北武汉 430074
  • 折叠

摘要

Abstract

To address the limitations of satellite altimetry gravity data in shallow water regions and improve the accuracy of bathymetric inversion,this study proposes a method based on deep learning using airborne gravity data.The approach is built upon the UNET model,enhanced with a Convolutional Block Attention Module(CBAM),and incorporates high-frequency loss and perceptual loss into the loss function to better preserve terrain details.The model is trained on synthetic topographic data and gravity anomalies derived from prism-based forward gravity modeling.It is then tested on both simulated and real airborne gravity datasets.For simulated data,the inversion yielded a mean error of 0.63 m and a standard deviation of 19.75 m,with a reasonable error distribution.In the real data test,the inverted results were compared with shipborne bathymetric data,yielding a mean error of 48.53 m and a root mean square error(RMSE)of 83.36 m.Compared with the BedMachine-v5 model,the proposed method reduced the mean absolute error by 65.21%and the RMSE by 46.26%.The findings demonstrate that the deep learning-based inversion method offers high accuracy and holds significant potential for improving bathymetric mapping in shallow coastal areas.

关键词

地形反演/机载航空重力/深度学习/CBAM模块/UNET模型

Key words

terrain inversion/aerial gravity/deep learning/CBAM module/UNET model

分类

天文与地球科学

引用本文复制引用

付天朔,叶周润,梁星辉,边少锋,柳林涛..基于深度学习的航空重力浅海海域地形反演[J].海洋测绘,2025,45(5):16-20,5.

基金项目

国家自然科学基金(42430101 ()

41904010) ()

国家重点研发计划(2024YFB3908104) (2024YFB3908104)

国家自然科学青年科学基金(42204052) (42204052)

大地测量与地球动力学重点实验室开放基金(SKLGED2022-1-4). (SKLGED2022-1-4)

海洋测绘

OA北大核心

1671-3044

访问量0
|
下载量0
段落导航相关论文