| 注册
首页|期刊导航|海洋测绘|基于改进的YOLOv7沉船目标检测算法研究

基于改进的YOLOv7沉船目标检测算法研究

陈俊杰 王晓 朱邦彦 陈文广 刘家琪

海洋测绘2025,Vol.45Issue(5):26-30,5.
海洋测绘2025,Vol.45Issue(5):26-30,5.DOI:10.3969/j.issn.1671-3044.2025.05.006

基于改进的YOLOv7沉船目标检测算法研究

Research on shipwreck target detection algorithm based on improved YOLOv7

陈俊杰 1王晓 1朱邦彦 2陈文广 1刘家琪1

作者信息

  • 1. 江苏海洋大学海洋技术与测绘学院,江苏连云港 222005
  • 2. 江苏光宇兆能新能源科技有限公司,江苏南京 210019
  • 折叠

摘要

Abstract

Aiming at the low recognition accuracy of traditional underwater target detection model,this paper proposes an improved target detection algorithm based on YOLOv7 using side-scan sonar wreck image as data set,and conducts detection on the measured strip image to verify the effectiveness of the improved model.Firstly,GAM attention mechanism is added to the neck network to improve the performance of the network by reducing information loss and amplifying global interaction.Then,some Concat splicing layers in the network are replaced by BiFPN structure to achieve efficient bidirectional cross-scale connection and weighted feature fusion.Finally,YOLOv7-P network is formed.The experimental results show that compared with the initial model,the improved model has an increase of 4.1 percentage points in F1 value,an increase of 4.4 percentage points in mAP50 accuracy,reaching 98.1%,and an increase of 4.1 percentage points in MAP50:95 accuracy,reaching 80.9%.Overall,the improved effect is significant.It provides an effective model for underwater target detection and recognition.

关键词

海洋测绘/深度学习/目标检测/侧扫声纳/YOLOv7模型

Key words

hydrographic surveying and charting/deep learning/object detection/side-scan sonar/YOLOv7 model

分类

天文与地球科学

引用本文复制引用

陈俊杰,王晓,朱邦彦,陈文广,刘家琪..基于改进的YOLOv7沉船目标检测算法研究[J].海洋测绘,2025,45(5):26-30,5.

基金项目

国家自然科学青年基金(41806117) (41806117)

江苏省海洋科技创新项目(JSZRHYKJ202201). (JSZRHYKJ202201)

海洋测绘

OA北大核心

1671-3044

访问量0
|
下载量0
段落导航相关论文