| 注册
首页|期刊导航|计算机工程|服务推荐方法的研究进展与展望(特邀)

服务推荐方法的研究进展与展望(特邀)

赵旭东 吴洪越 孟柯 许小龙 窦万春

计算机工程2026,Vol.52Issue(1):61-75,15.
计算机工程2026,Vol.52Issue(1):61-75,15.DOI:10.19678/j.issn.1000-3428.0252977

服务推荐方法的研究进展与展望(特邀)

Research Progress and Prospects of Service Recommendation Methods(Invited)

赵旭东 1吴洪越 2孟柯 1许小龙 1窦万春3

作者信息

  • 1. 南京信息工程大学软件学院,江苏南京 210044
  • 2. 天津大学智能与计算学部,天津 300350
  • 3. 南京大学计算机软件新技术国家重点实验室,江苏南京 210023
  • 折叠

摘要

Abstract

With the rapid development of the Internet,cloud computing,and artificial intelligence,service recommendation has become a key technique in service computing.It helps users find appropriate services quickly and accurately,improves resource utilization,and enhances user experience.This paper presents a systematic review of the research progress in service recommendation and summarizes representative studies.This review introduces three main recommendation methods:traditional method,context-aware,and neural network-based.Each category is described in terms of fundamental principles,typical applications,advantages,and limitations.This paper also discusses the major challenges in service recommendation,including data sparsity and cold start;incomplete and noisy Quality of Service(QoS)data;dynamic changes in services and contexts;insufficient explainability;and issues of real-time performance,scalability,privacy,and security.Finally,this paper presents an overview of the limitations of current research and explores future research directions.Emerging technologies,such as big data analytics,Knowledge Graphs(KGs),deep learning,Large Language Models(LLMs),and reinforcement learning,have been highlighted as promising approaches for improving the intelligence,personalization,and trustworthiness of service recommendations.This review provides a comprehensive understanding of the field and serves as a valuable reference for further research and practical applications.

关键词

服务推荐/服务质量/上下文感知/深度学习/数据挖掘

Key words

service recommendation/Quality of Service(QoS)/context-aware/deep learning/data mining

分类

信息技术与安全科学

引用本文复制引用

赵旭东,吴洪越,孟柯,许小龙,窦万春..服务推荐方法的研究进展与展望(特邀)[J].计算机工程,2026,52(1):61-75,15.

基金项目

国家自然科学基金重大研究计划子课题(92267104) (92267104)

江苏省前沿引领技术基础研究重大专项(BK20232032). (BK20232032)

计算机工程

1000-3428

访问量0
|
下载量0
段落导航相关论文