| 注册
首页|期刊导航|计算机工程与应用|深度学习在舌象分割中的应用综述

深度学习在舌象分割中的应用综述

崔亚君 倪燕 魏国辉

计算机工程与应用2026,Vol.62Issue(1):29-46,18.
计算机工程与应用2026,Vol.62Issue(1):29-46,18.DOI:10.3778/j.issn.1002-8331.2501-0127

深度学习在舌象分割中的应用综述

Review of Deep Learning in Tongue Image Segmentation

崔亚君 1倪燕 2魏国辉1

作者信息

  • 1. 山东中医药大学 医学信息工程学院,济南 250355
  • 2. 济宁医学院 医学信息工程学院,山东 济宁 257300
  • 折叠

摘要

Abstract

The objectification and quantification of traditional Chinese medicine(TCM)tongue diagnosis is an important topic in the modernization of TCM.Tongue image segmentation,as the foundation and prerequisite for automated tongue image analysis,directly impacts the accuracy of subsequent feature analysis.Deep learning technologies have made signifi-cant progress in the field of tongue image segmentation,greatly improving segmentation accuracy and automation.This article briefly introduces commonly used public datasets and data preprocessing methods for tongue image segmentation.It then categorizes existing methods based on the characteristics of their network architectures into four main types:seg-mentation methods based on classic convolutional neural network(CNN)structures,methods based on modular design,methods based on generative adversarial networks,and methods based on Transformers.The advantages and limitations of each type are discussed.Next,the applications of segmented tongue images in disease diagnosis are summarized,emphasizing the role of tongue image segmentation in supporting intelligent disease diagnosis.Finally,this article points out the challenges faced by current deep learning techniques in the field of tongue image segmentation,such as limited dataset size,and insufficient model generalization ability.It also provides prospects for future research directions in this field.

关键词

舌象分割/深度学习/舌象图像/U-Net

Key words

tongue image segmentation/deep learning/tongue image/U-Net

分类

信息技术与安全科学

引用本文复制引用

崔亚君,倪燕,魏国辉..深度学习在舌象分割中的应用综述[J].计算机工程与应用,2026,62(1):29-46,18.

基金项目

国家重点基础研究发展计划(2007CB512600) (2007CB512600)

山东省自然科学基金(ZR2022MH203). (ZR2022MH203)

计算机工程与应用

1002-8331

访问量0
|
下载量0
段落导航相关论文