| 注册
首页|期刊导航|计算机工程与应用|基于深度学习的法律判决预测研究综述

基于深度学习的法律判决预测研究综述

刘世娟 余树坤 张宸玮 刘谢天 李培森 田萱

计算机工程与应用2026,Vol.62Issue(1):68-86,19.
计算机工程与应用2026,Vol.62Issue(1):68-86,19.DOI:10.3778/j.issn.1002-8331.2502-0092

基于深度学习的法律判决预测研究综述

Research Review of Deep Learning-Based Legal Judgment Prediction

刘世娟 1余树坤 1张宸玮 1刘谢天 1李培森 1田萱1

作者信息

  • 1. 北京林业大学 信息学院(人工智能学院),北京 100083||国家林业草原林业智能信息处理工程技术研究中心,北京 100083
  • 折叠

摘要

Abstract

Legal judgment prediction(LJP),as a pivotal task in the domain of intelligent justice,focuses on employing natural language processing(NLP)technologies to deeply analyze legal texts,thereby accurately predicting the applicable legal articles,charge categories,and penalty outcomes of judicial cases.With the deep integration of artificial intelligence and the judicial field,the efficient and reliable LJP method has great practical significance to improve judicial efficiency and promote intelligent judgment.However,existing researches still exhibit significant limitations in technical approaches and theoretical frameworks,and studies that systematically summarize the core challenges and methodological innova-tions in this field are urgently needed.This study systematically outlines the operational workflow of LJP,encompassing input processing,encoding,prediction,and result generation.It delves into core challenges at each stage,such as limita-tions in input information,difficulties in handling long texts,and insufficient utilization of legal precedents.Furthermore,the research synthesizes corresponding mitigation strategies,including the construction of multi-task learning frame-works,the application of contrastive learning paradigms,and the exploration of interpretability enhancement approaches.Future research directions are also highlighted,such as multimodal information fusion,efficient processing of unstruc-tured texts,and optimization for few-shot learning scenarios.

关键词

法律判决预测/深度学习/阶段性挑战/多任务学习/长文本处理

Key words

legal judgment prediction/deep learning/stage-specific challenges/multi-task learning/long-text processing

分类

社会科学

引用本文复制引用

刘世娟,余树坤,张宸玮,刘谢天,李培森,田萱..基于深度学习的法律判决预测研究综述[J].计算机工程与应用,2026,62(1):68-86,19.

基金项目

北京林业大学大创项目(X202410022251) (X202410022251)

北京市科技计划项目(Z221100005222018). (Z221100005222018)

计算机工程与应用

1002-8331

访问量0
|
下载量0
段落导航相关论文