| 注册
首页|期刊导航|计算机工程与应用|部分强化效应驱动的大规模多目标优化问题求解算法

部分强化效应驱动的大规模多目标优化问题求解算法

顾清华 王晗睿 王倩 骆家乐

计算机工程与应用2026,Vol.62Issue(1):172-191,20.
计算机工程与应用2026,Vol.62Issue(1):172-191,20.DOI:10.3778/j.issn.1002-8331.2505-0294

部分强化效应驱动的大规模多目标优化问题求解算法

Algorithm for Solving Large-Scale Multi-Objective Optimization Problems Driven by Partial Reinforcement Effect

顾清华 1王晗睿 1王倩 2骆家乐2

作者信息

  • 1. 西安建筑科技大学 资源工程学院,西安 710055||西安市智慧工业感知、计算与决策重点实验室,西安 710055
  • 2. 西安市智慧工业感知、计算与决策重点实验室,西安 710055||西安建筑科技大学 管理学院,西安 710055
  • 折叠

摘要

Abstract

To address the challenges of high-dimensional decision space,convergence difficulties,and inefficient resource allocation in large-scale multi-objective optimization problems,the DVA-PRO algorithm driven by partial reinforcement effect for large-scale multi-objective optimization problems is proposed.This algorithm reconstructs the original objective problem through binary decision variables to reduce dimensionality and designs an evaluation and positive reinforcement mechanism based on partial reinforcement effect theory.It dynamically allocates computational resources,with a high reinforcement rate in the early stages of optimization to promote convergence and an expanded reinforcement scope in the later stages to maintain diversity.Comparison experiments of DVA-PRO with six algorithms are conducted on 100 large-scale multi-objective optimization benchmark test problems,and simulations are performed on four types of real-world engineering application problems.The experimental results indicate that DVA-PRO ranks first in terms of performance metrics on 79 benchmark test problems and all real-world engineering application problems.Under the same computational resource constraints,DVA-PRO can effectively search for and converge to the Pareto front,demonstrating superior com-prehensive performance to other algorithms and showing both efficiency and versatility in different types of large-scale multi-objective optimization problems.

关键词

进化算法/大规模优化/多目标优化/部分强化效应/问题重构

Key words

evolutionary algorithm/large-scale optimization/multi-objective optimization/partial reinforcement effect/problem restruring

分类

信息技术与安全科学

引用本文复制引用

顾清华,王晗睿,王倩,骆家乐..部分强化效应驱动的大规模多目标优化问题求解算法[J].计算机工程与应用,2026,62(1):172-191,20.

基金项目

国家自然科学基金(52374135,52074205) (52374135,52074205)

陕西省金属矿智能开采理论及技术创新团队(2023-CX-TD-12) (2023-CX-TD-12)

陕西省矿产资源低碳智能高效开采技术创新引智基地 ()

陕西省智能开采理论与技术创新团队高校青年创新团队. ()

计算机工程与应用

1002-8331

访问量0
|
下载量0
段落导航相关论文