| 注册
首页|期刊导航|南京航空航天大学学报(英文版)|基于多尺度卷积神经网络的路面裂缝提取

基于多尺度卷积神经网络的路面裂缝提取

詹必恒 宋翔宇 程建蕊 乔盘 王腾飞

南京航空航天大学学报(英文版)2025,Vol.42Issue(6):749-766,18.
南京航空航天大学学报(英文版)2025,Vol.42Issue(6):749-766,18.DOI:10.16356/j.1005-1120.2025.06.004

基于多尺度卷积神经网络的路面裂缝提取

Pavement Crack Extraction Based on Multi-scale Convolutional Neural Network

詹必恒 1宋翔宇 2程建蕊 3乔盘 4王腾飞5

作者信息

  • 1. 道路与铁道工程安全保障省部共建教育部重点实验室(石家庄铁道大学),石家庄 050043,中国||石家庄铁道大学土木工程学院,石家庄 050043,中国
  • 2. 道路与铁道工程安全保障省部共建教育部重点实验室(石家庄铁道大学),石家庄 050043,中国||石家庄铁道大学土木工程学院,石家庄 050043,中国||极地环境监测与公共治理教育部重点实验室(武汉大学),武汉 430079,中国
  • 3. 河北省制图院,石家庄 050031,中国
  • 4. 河北交规院瑞志交通技术咨询有限公司,石家庄 050090,中国||河北省道路工程智能监测与运维技术创新中心,保定 071799,中国
  • 5. 中铁隧道局集团路桥工程有限公司,天津 300450,中国
  • 折叠

摘要

Abstract

Cracks represent a significant hazard to pavement integrity,making their efficient and automated extraction essential for effective road health monitoring and maintenance.In response to this challenge,we propose a crack automatic extraction network model that integrates multi-scale image features,thereby enhancing the model's capability to capture crack characteristics and adaptation to complex scenarios.This model is based on the ResUNet architecture,makes modification to the convolutional layer of the model,proposes to construct multiple branches utilizing different convolution kernel sizes,and adds a atrous spatial pyramid pooling module within the intermediate layers.In this paper,comparative experiments on the performance of the basic model,ablation experiments,comparative experiments before and after data augmentation,and generalization verification experiments are conducted.Comparative experimental results indicate that the improved model exhibits superior detail processing capability at crack edges.The overall performance of the model,as measured by the F1-score,reaches 71.03%,reflecting a 2.1%improvement over the conventional ResUNet.

关键词

道路工程/神经网络/多尺度卷积/路面裂缝

Key words

road engineering/neural networks/multi-scale convolution/pavement cracks

分类

信息技术与安全科学

引用本文复制引用

詹必恒,宋翔宇,程建蕊,乔盘,王腾飞..基于多尺度卷积神经网络的路面裂缝提取[J].南京航空航天大学学报(英文版),2025,42(6):749-766,18.

基金项目

This work was supported in part by the National Natural Science Foundation of China(No.42401166),the Open Fund of Key Laboratory of Polar En-vironment Monitoring and Public Governance,Ministry of Education(No.202405),and the Key Research and Devel-opment Program of Hebei Province(No.23375405D). (No.42401166)

南京航空航天大学学报(英文版)

1005-1120

访问量0
|
下载量0
段落导航相关论文