| 注册
首页|期刊导航|南京信息工程大学学报|基于强监督数据增强的双阶段扎把烟叶分级模型

基于强监督数据增强的双阶段扎把烟叶分级模型

廖文静 黄剑满 杨洋 和红杰 陈帆

南京信息工程大学学报2026,Vol.18Issue(1):48-59,12.
南京信息工程大学学报2026,Vol.18Issue(1):48-59,12.DOI:10.13878/j.cnki.jnuist.20250317003

基于强监督数据增强的双阶段扎把烟叶分级模型

A two-stage bundled tobacco grading model using strongly supervised data augmentation

廖文静 1黄剑满 2杨洋 3和红杰 1陈帆4

作者信息

  • 1. 西南交通大学 信息科学与技术学院,成都,611756
  • 2. 广东力生智能有限公司,东莞,523000
  • 3. 西南交通大学 唐山研究院,唐山,063000
  • 4. 西南交通大学 计算机与人工智能学院,成都,611756
  • 折叠

摘要

Abstract

Using bundles as the grading unit for tobacco leaves is a key strategy to improve efficiency of tobacco procurement.However,due to occlusion and curling characteristics within the bundles,existing mainstream classifi-cation methods struggle to accurately extract their fine-grained features for grading.To address this,we propose a two-stage grading model for bundled tobacco leaves based on strongly supervised data augmentation.Our approach achieves precise grading in a progressive manner.First,a dual-attention residual network is designed to adaptively fuse multi-dimensional features for coarse-grained information extraction,and a soft channel attention module is pro-posed to generate attention maps highlighting key regions of the bundled leaves,thereby enabling coarse grading.Then,guided by these attention maps,we perform strongly supervised data augmentation on the global images to crop local images with distinctive features.This step facilitates a more refined grading by encouraging the network to fo-cus on discriminative fine-grained features.The proposed method is compared with current mainstream general and fine-grained classification approaches on a bundled tobacco leaf dataset.Experimental results show that the proposed method achieves a grading accuracy and macro-F1 score of 98.54%,significantly outperforming the compared meth-ods,and better meets the practical needs of industrial bundled tobacco leaf grading.

关键词

烟叶分级/扎把烟叶/细粒度特征/强监督数据增强

Key words

tobacco leaf grading/bundled tobacco leaves/fine-grained feature/strongly supervised data augmenta-tion

分类

信息技术与安全科学

引用本文复制引用

廖文静,黄剑满,杨洋,和红杰,陈帆..基于强监督数据增强的双阶段扎把烟叶分级模型[J].南京信息工程大学学报,2026,18(1):48-59,12.

基金项目

国家自然科学基金(U1936113) (U1936113)

西南交通大学企业级纵向项目(R111624H01022) (R111624H01022)

南京信息工程大学学报

1674-7070

访问量0
|
下载量0
段落导航相关论文