| 注册
首页|期刊导航|南京信息工程大学学报|AIGC驱动的图像超分重构赋能教学实践应用研究

AIGC驱动的图像超分重构赋能教学实践应用研究

赵迪 常升龙 孙廷 赵章红

南京信息工程大学学报2026,Vol.18Issue(1):76-86,11.
南京信息工程大学学报2026,Vol.18Issue(1):76-86,11.DOI:10.13878/j.cnki.jnuist.20250429001

AIGC驱动的图像超分重构赋能教学实践应用研究

Application of AIGC-driven super-resolution image reconstruction in empowering teaching practices

赵迪 1常升龙 2孙廷 3赵章红4

作者信息

  • 1. 河南开放大学 工商与财会学院,郑州,450046||郑州大学 管理学院,郑州,450001
  • 2. 河南师范大学 软件学院,新乡,453007
  • 3. 南阳农业职业学院 教务处,南阳,473000
  • 4. 浙江中医药大学 金华研究院,金华,321017||河南工程学院 软件学院,郑州,450004
  • 折叠

摘要

Abstract

With the advancement of Artificial Intelligence Generated Content(AIGC)technology,the application of images in educational settings has emerged as a new research focus.As a pivotal medium for knowledge transmis-sion,the clarity,texture details,color vibrancy,and overall image fidelity of images directly influence teaching effi-cacy.This study aims to modify the architecture of the diffusion model to achieve Super-Resolution(SR)recon-struction of images suffering from various quality degradation issues,and to evaluate the effectiveness of applying these SR-enhanced images across diverse teaching contexts.Initially,the study addresses the mismatch between im-age quality and teaching requirements by refining the diffusion model's structural design.Subsequently,both subjec-tive and objective experiments are conducted to integrate SR-reconstructed images into real-world teaching environ-ments.Finally,a comprehensive evaluation framework is constructed based on the experimental findings to substanti-ate the practical benefits of the reconstructed images.The results show that compared to images generated by tradi-tional methods,the application of SR images generated by the modified model in teaching activities improves the av-erage efficiency of knowledge transfer by approximately 22.9%,and reduces the time teachers spend on lesson prep-aration by about 15.6%.This study provides a theoretical foundation and practical insights for leveraging artificial intelligence to drive pedagogical innovation.

关键词

AIGC/扩散模型/图像处理/超分重构/教学场景

Key words

artificial intelligence generated content(AIGC)/diffusion model/image processing/super-resolution(SR)reconstruction/teaching scenario

分类

社会科学

引用本文复制引用

赵迪,常升龙,孙廷,赵章红..AIGC驱动的图像超分重构赋能教学实践应用研究[J].南京信息工程大学学报,2026,18(1):76-86,11.

基金项目

河南省本科高校研究性教学改革研究与实践项目(197) (197)

河南省重点研发专项(241111210300) (241111210300)

河南省教改重点课题(2024SJGLX0141,2021SJGLX217) (2024SJGLX0141,2021SJGLX217)

河南省科技攻关项目(252102111168,252102211020) (252102111168,252102211020)

南京信息工程大学学报

1674-7070

访问量0
|
下载量0
段落导航相关论文