| 注册
首页|期刊导航|生物加工过程|小样本机器学习在酶工程中的应用进展

小样本机器学习在酶工程中的应用进展

周佳楠 杨立荣 江玲 于浩然

生物加工过程2025,Vol.23Issue(6):628-638,11.
生物加工过程2025,Vol.23Issue(6):628-638,11.DOI:10.3969/j.issn.1672-3678.2025.06.004

小样本机器学习在酶工程中的应用进展

Advances in the application of few-shot learning in enzyme engineering

周佳楠 1杨立荣 1江玲 1于浩然1

作者信息

  • 1. 浙江大学 化学工程与生物工程学院 生物工程研究所,浙江 杭州 310027||浙江大学杭州国际科创中心 全省功能化学品智造重点实验室,浙江 杭州 311200
  • 折叠

摘要

Abstract

Machine learning,as an emerging powerful tool in enzyme engineering,can enable the elucidation of complex relationships between biological sequences and functions,thereby accelerating the identification and design of high-performance enzymes.However,this approach heavily relies on large volume of high-quality labeled data,posing significant challenges with regards to data acquisition via wet-lab experiments.Recently,few-shot learning,particularly through transfer learning strategies,provided novel solutions to the data scarcity issue and demonstrated great potential in enzyme engineering.In this review,we first outlined the typical workflow of applying machine learning to enzyme engineering—from dataset construction and feature extraction to model training,functional prediction,and experimental validation.Then,we highlighted recent advances in using few-shot learning for optimizing enzyme activity,substrate specificity,and stereoselectivity.In the end,we presented future research directions in this field.

关键词

小样本学习/机器学习/酶工程/定向进化

Key words

few-shot learning/machine learning/enzyme engineering/directed evolution

分类

生物科学

引用本文复制引用

周佳楠,杨立荣,江玲,于浩然..小样本机器学习在酶工程中的应用进展[J].生物加工过程,2025,23(6):628-638,11.

基金项目

浙江省"尖兵""领雁"科技计划(2025C01097) (2025C01097)

生物加工过程

1672-3678

访问量0
|
下载量0
段落导航相关论文