山西大学学报(自然科学版)2026,Vol.49Issue(1):55-63,9.DOI:10.13451/j.sxu.ns.2024014
一类分数阶脉冲微分方程边值问题解的存在性
Existence of Solutions to Boundary Value Problems of a Class of Fractional Order Impulsive Differential Equations
摘要
Abstract
In this paper,based on the study of a class of fractional-order differential equations with p-Laplacian operator,we discuss the existence of solutions for the class of fractional-order differential equations with both instantaneous and non-instantaneous pulses under Dirichlet boundary value conditions.By using the critical point theory proposed by Ricceri,it is proved that there are at least three solutions of this kind of boundary value problem,and the multiplicity of solutions of this kind of boundary value problem de-pends on two parameters.Finally,an example is given to illustrate the applicability of the results.关键词
变分法/瞬时和非瞬时脉冲/p-Laplacian算子/临界点理论Key words
variational method/instantaneous and non-instantaneous pulses/p-Laplacian operator/critical point theory分类
数理科学引用本文复制引用
黎文博,周文学,张敏..一类分数阶脉冲微分方程边值问题解的存在性[J].山西大学学报(自然科学版),2026,49(1):55-63,9.基金项目
国家自然科学基金(11961039) (11961039)
甘肃省基础研究创新群体项目(25JRRA805) (25JRRA805)