| 注册
首页|期刊导航|西安理工大学学报|基于VMD-LSTM的高速公路综合场站碳排放预测研究

基于VMD-LSTM的高速公路综合场站碳排放预测研究

高晓明 许文峰 邱浪 任高峰 郑一柳 么学春 徐琛

西安理工大学学报2025,Vol.41Issue(4):499-508,10.
西安理工大学学报2025,Vol.41Issue(4):499-508,10.DOI:10.19322/j.cnki.issn.1006-4710.2025.04.005

基于VMD-LSTM的高速公路综合场站碳排放预测研究

Carbon emission prediction of expressway integrated station based on VMD-LSTM

高晓明 1许文峰 1邱浪 2任高峰 2郑一柳 1么学春 1徐琛2

作者信息

  • 1. 中交建筑集团有限公司,北京 100022||中交建筑集团东南建设有限公司,福建厦门 361000
  • 2. 武汉理工大学资源与环境工程学院,湖北武汉 430070
  • 折叠

摘要

Abstract

Highway integrated stations are critical nodes for energy consumption and carbon emis-sions in bridge and road construction.To achieve the accurate prediction of its carbon emission,this paper innovatively constructs a carbon emission prediction model combining variational mode decomposition(VMD)and long short-term memory(LSTM)networks,based on 146 days of energy consumption monitoring data from the integrated station of the Changxiu Expressway's Fengqiu to Xiuwu section.The results show that the VMD-LSTM model effectively captures the periodic variation patterns of carbon emissions at the integrated station,with its predicted values trending highly consistent with actual values trends.The model demonstrates excellent a predic-tive performance,achieving an accuracy rate(AR)of 94.32%,mean squared error(MSE)of 0.099 3,root mean squared error(RMSE)of 0.315 0,and coefficient of determination(R2)of 0.973 9,significantly outperforming the traditional LSTM model.The research findings provide the theoretical guidance and technical support for precise energy conservation and carbon reduc-tion in highway integrated stations.

关键词

高速公路综合场站/碳排放/变分模态分解/长短期记忆网络/预测模型

Key words

expressway integrated station/carbon emission/VMD/LSTM/prediction model

分类

资源环境

引用本文复制引用

高晓明,许文峰,邱浪,任高峰,郑一柳,么学春,徐琛..基于VMD-LSTM的高速公路综合场站碳排放预测研究[J].西安理工大学学报,2025,41(4):499-508,10.

基金项目

中国施工企业管理协会重大科研项目(2023-A-032) (2023-A-032)

西安理工大学学报

OA北大核心

1006-4710

访问量0
|
下载量0
段落导航相关论文