| 注册
首页|期刊导航|现代应用物理|基于深度学习的共振计算方法研究及其在堆芯分析中的应用

基于深度学习的共振计算方法研究及其在堆芯分析中的应用

曹璐 李达 王立鹏 胡田亮 姜夺玉 李华琪 陈立新 刘宙宇 曹良志

现代应用物理2025,Vol.16Issue(6):54-71,18.
现代应用物理2025,Vol.16Issue(6):54-71,18.DOI:10.12061/j.issn.2095-6223.202506013

基于深度学习的共振计算方法研究及其在堆芯分析中的应用

Research on Deep Learning-Based Resonance Calculation Method and Its Application in Core Analysis

曹璐 1李达 1王立鹏 1胡田亮 1姜夺玉 1李华琪 1陈立新 1刘宙宇 2曹良志2

作者信息

  • 1. 强脉冲辐射环境模拟与效应全国重点实验室,西安 710024
  • 2. 西安交通大学核科学与技术学院,西安 710049
  • 折叠

摘要

Abstract

To address the challenge of calculating effective self-shielding cross-sections(XSs)for fuels with temperature distribution,a deep learning-based approach is integrated into the resonance calculation module of the NECP-X code.Six deep learning models are developed,optimized,and trained to handle temperature-dependent effects in both rod-shaped and annular fuel configurations.The XSs calculation accuracy of the proposed method is validated through benchmark problems,involving fuel cells.Further applications to annular fuel assemblies and a full-core small research reactor demonstrate its capability.Results show that the deep learning-based resonance method effectively resolves temperature-dependent self-shielding effects,with good agreement in eigenvalues and power distributions compared to reference solutions.

关键词

NECP-X/深度学习/共振计算/棒状燃料/环形燃料/全堆芯分析

Key words

NECP-X/deep learning/resonance calculation/rod-shaped fuel/annular fuel/full-core analysis

分类

能源科技

引用本文复制引用

曹璐,李达,王立鹏,胡田亮,姜夺玉,李华琪,陈立新,刘宙宇,曹良志..基于深度学习的共振计算方法研究及其在堆芯分析中的应用[J].现代应用物理,2025,16(6):54-71,18.

基金项目

国家自然科学基金资助项目(12275219,12205237) (12275219,12205237)

现代应用物理

2095-6223

访问量0
|
下载量0
段落导航相关论文