| 注册
首页|期刊导航|中国农业气象|基于高标准农田小气候要素的冬小麦土壤相对湿度模拟模型

基于高标准农田小气候要素的冬小麦土壤相对湿度模拟模型

谢家旭 成林 刘志雄 董宛麟

中国农业气象2026,Vol.47Issue(1):73-82,10.
中国农业气象2026,Vol.47Issue(1):73-82,10.DOI:10.3969/j.issn.1000-6362.2026.01.007

基于高标准农田小气候要素的冬小麦土壤相对湿度模拟模型

Simulation Model of Winter Wheat Soil Relative Humidity Based on High-standard Farmland Microclimate Factors

谢家旭 1成林 2刘志雄 1董宛麟3

作者信息

  • 1. 湖北省气候中心,武汉 430070
  • 2. 河南省气象科学研究所,郑州 450003
  • 3. 中国气象局气象干部培训学院,北京 100081
  • 折叠

摘要

Abstract

This study utilized microclimate data from high-standard farmlands during wheat growing season(October to May)from 2021 to 2023.By investigating the lagged response of soil relative humidity(SRH)to microclimate factors,this study developed three machine learning models,Random Forest(RF),Backpropagation Neural Network(BPNN)and Support vector regression(SVR),using the Optuna framework for hyperparameter optimization.The models predicted SRH at three forecasting horizons(3-,5-and 10-days)across five soil depths(10cm,20cm,30cm,40cm and 50cm)to establish a predictive reference system for high-standard farmland.The results indicated that:(1)SRH exhibited a fluctuating decrease throughout winter wheat growth stages,with maximum values(90.4%)during sowing to emergence and minimum values(73.9%)at anthesis to maturity stage.(2)The response characteristics of SRH to microclimate factors varied significantly.SRH demonstrated the strongest yet slowest response to ground temperatures(r=0.32-0.57;5-10d lag),and the weakest yet fastest response to air relative humidity(r<0.20;1-3d lag).As soil depth increased,the correlation between SRH and precipitation,daily mean air temperature and daily maximum temperatures decreased,whereas correlations with maximum daily wind speed and soil temperatures(10cm,20cm and 50cm depths)increased gradually.(3)Among the three simulation models,the RF model achieved superior performance across all prediction horizons(R²=0.87-0.98,RMSE=0.02-0.05,MAE=0.01-0.03),significantly outperforming SVR(R2=0.77-0.97,RMSE=0.03-0.07,MAE=0.02-0.04)and BPNN(R2=0.60-0.97,RMSE=0.04-0.07,MAE=0.01-0.06).A comprehensive evaluation showed that the RF model was better suited for short-term predictions of soil moisture in high-standard farmland,providing valuable technical support for precise water management in Henan.

关键词

高标准农田/小气候要素/机器学习/土壤相对湿度

Key words

High-standard farmland/Microclimate factor/Machine learning/Soil relative humidity

引用本文复制引用

谢家旭,成林,刘志雄,董宛麟..基于高标准农田小气候要素的冬小麦土壤相对湿度模拟模型[J].中国农业气象,2026,47(1):73-82,10.

基金项目

中国气象局青年创新团队"高标准农田智慧气象保障技术"项目(CMA2024QN03) (CMA2024QN03)

河南省科技攻关计划项目(252102320003) (252102320003)

中国气象局创新发展专项项目(CXFZ2025J057) (CXFZ2025J057)

中国农业气象

1000-6362

访问量0
|
下载量0
段落导航相关论文