| 注册
首页|期刊导航|中国铁道科学|基于改进YOLOv9的钢轨B显图像损伤识别算法

基于改进YOLOv9的钢轨B显图像损伤识别算法

白堂博 刘伟峰 宫明明 张玉华 黄筱妍

中国铁道科学2025,Vol.46Issue(6):34-43,10.
中国铁道科学2025,Vol.46Issue(6):34-43,10.DOI:10.3969/j.issn.1001-4632.2025.06.04

基于改进YOLOv9的钢轨B显图像损伤识别算法

Research on Track B Image Damage Recognition Algorithm Based on Improved YOLOv9

白堂博 1刘伟峰 1宫明明 2张玉华 3黄筱妍3

作者信息

  • 1. 北京建筑大学 机电与车辆工程学院,北京 100044||北京建筑大学 城市轨道交通车辆服役性能保障北京市重点实验室,北京 100044
  • 2. 青岛职业技术学院 信息学院,山东 青岛 266555
  • 3. 中国铁道科学研究院集团有限公司 基础设施检测研究所,北京 100081
  • 折叠

摘要

Abstract

Target Detection in B-scan images is currently a relatively effective method for rail flaw detection.To address the problem that traditional object detection algorithms tend to produce misjudgments and omissions for different types of flaws when detecting B-scan images,this paper proposes a flaw recognition algorithm for rail B-scan images based on the improved YOLOv9.Firstly,aiming at the problem of omissions and misjudgments,a novel multi-level feature fusion mechanism is proposed to improve model accuracy and reduce omissions and misjudgments.Then,aiming at the problems that traditional algorithms rely heavily on high-quality datasets and have a large model computational load,the loss function is optimized and the depthwise separable convolution is introduced to improve model training efficiency.Finally,verification of the improved YOLOv9 algorithm is conducted by testing various detection metrics of the YOLOv9 algorithm(before and after improvement)on the B-scan image dataset.The results show that the detection average precision(AP)of the YOLOv9 model after various improvements reaches 99.5%,and its performance outperforms other models.

关键词

钢轨/探伤/B显图像/YOLOv9/目标检测/损伤识别

Key words

Rail/Flaw detection/B-scan image/YOLOv9/Object detection/Flaw recognition

分类

交通工程

引用本文复制引用

白堂博,刘伟峰,宫明明,张玉华,黄筱妍..基于改进YOLOv9的钢轨B显图像损伤识别算法[J].中国铁道科学,2025,46(6):34-43,10.

基金项目

北京市自然科学基金资助项目(L211007,L221027) (L211007,L221027)

中国铁道科学

OA北大核心

1001-4632

访问量0
|
下载量0
段落导航相关论文