| 注册
首页|期刊导航|北京师范大学学报(自然科学版)|融合视频数据的梯度提升算法在基金收益率预测中的应用研究

融合视频数据的梯度提升算法在基金收益率预测中的应用研究

谭晶桦 王硕 康明惠

北京师范大学学报(自然科学版)2025,Vol.61Issue(6):776-785,10.
北京师范大学学报(自然科学版)2025,Vol.61Issue(6):776-785,10.DOI:10.12202/j.0476-0301.2025146

融合视频数据的梯度提升算法在基金收益率预测中的应用研究

Gradient boosting algorithm integrating video data applied to prediction of mutual fund returns

谭晶桦 1王硕 1康明惠1

作者信息

  • 1. 四川农业大学经济学院,四川成都
  • 折叠

摘要

Abstract

Roadshow video data from Chinese public mutual funds are used to construct a multimodal feature system incorporating textual semantics,linguistic structure,and vocal behaviors.A gradient boosting regression(GBR)model is used to predict next-day fund returns.Model parameters are optimized through cross-validation and grid search with the 2020 dataset of Chinese mutual funds.Comparative analyses with support vector regression(SVR),random forest(RF),and Lasso regression show that this GBR model achieves significantly higher predictive accuracy.Interpretability analysis further indicates that linguistic and acoustic features proportion of vague expressions,speaking rate,pitch variation make prominent contributions to prediction performance.These findings confirm that language style and communication patterns contain meaningful behavioral signals that affect investor judgments and market responses,offering forward-looking informational value.The present work extends the application of multimodal data in fund analysis,provides quantitative evidence to support fund managers in optimising video-based disclosures and investors in identifying non-financial signals.

关键词

多模态特征/基金路演视频/收益率预测/梯度提升回归/可解释性分析

Key words

multi-modal feature/fund roadshow video/return prediction/gradient boosting regression/explainable analysis

分类

管理科学

引用本文复制引用

谭晶桦,王硕,康明惠..融合视频数据的梯度提升算法在基金收益率预测中的应用研究[J].北京师范大学学报(自然科学版),2025,61(6):776-785,10.

基金项目

国家自然科学基金资助项目(72442024,72301188) (72442024,72301188)

北京师范大学学报(自然科学版)

OA北大核心

0476-0301

访问量0
|
下载量0
段落导航相关论文